ОБЗОР И АНАЛИЗ НЕКОТОРЫХ ТЕХНИЧЕСКИХ РЕШЕНИЙ ПРИМЕНЕННЫХ ПРИ РАЗРАБОТКЕ АМЕРИКАНСКИХ LW SMR 

 

Часть 2. О системах безопасности малых реакторов

 

3.   О РАБОТЕ СИСТЕМ БЕЗОПАСНОСТИ УСТАНОВОК LW SMR

Отдельный и очень детальный разговор требуется для анализа работы систем безопасности и вывода любой установки малой мощности. Абсолютно очевидно, что системы безопасности проектируемые в разных странах отличаются радикально. Это также касается и работы систем при нормальном, и при аварийном выводе. К примеру, предложенные NuScale схемные решения, на мой взгляд, абсолютно не удовлетворяют необходимым и достаточным требованиям безопасности требуемой именно для малых установок. А в США, такая концепция популярна, но для больших реакторов. Что было с этой концепцией в Фукушиме, весьма наглядно.

Во всех презентациях NuScale, да и других проектантов, указывается (декларируется) наличие надежных пассивных систем расхолаживания в конструкции установки. Но детально не рассматривается их использование, последовательность срабатывания оборудования, подключение этих систем в работу. Поэтому, в отсутствие информации приходится руководствоваться лишь относительно здравым смыслом и строить рассуждения на допущениях, догадках и понимании того, как эти системы работают. Планируется, что рассмотрение проектов прочих разработчиков будет выполнено в продолжениях анализа и других установок.

 

3.1.   КАНАЛЫ ОТВОДА ТЕПЛА ПРИ АВАРИЙНОМ РАСХОЛАЖИВАНИИ

Не требует специального обоснования постулат о том, что для безопасного вывода установки/реактора любого типа, необходимо несколько путей/каналов отвода аккумулированного в контуре тепла и остаточных тепловыделений из/от АЗ. Пока нами не рассматривается циркуляция теплоносителя первого контура, в этом процессе, а это отдельный и весьма интересный разговор. Для начала, идентифицируем каналы отвода тепла  в установке и рассмотрим требования к таким каналам:

  • Первый канал (основная система отвода тепла), это сброс пара, пароводяной смеси или воды (в разных режимах) из парогенератора через паропроводы, на главный конденсатор (ГК). При выводе установки с использованием этого канала, обычно включаются в работу пусковые питательные насосы (ППН) и работают конденсатные насосы (КН), а сброс отепленной среды осуществляется на ГК с предварительным увлажнением пара холодной водой. Затем переходит в режим сброса паро-водяной смеси и в окончании, отепленной воды. На каком-то этапе, теплоотвод переводится/переключается на системы  длительного расхолаживания.

Электро-питание при таком выводе присутствует, все задействованные системы установки работают штатно. Отвод пика остаточных тепловыделений (ОТВ) не затруднен. Реактор переводится в режим обычного (длительного) расхолаживания или в краткосрочный режим нерасхолаживания. Это зависит от характера аварии и сигнала по которому сработала а/з.

  • Второй канал расхолаживания, имеет как правило 2 независимых ветви (работает при аварии основной системы отвода тепла), включается в работу, если повреждена паровая или конденсатно-питательная система (КПС), а также ГК и/или его система охлаждения, иными словами, повреждена основная система отвода тепла. В этом случае необходим резервный канал теплоотвода. Обычно это сброс пара и/или паро-водяной смеси из парогенератора на специальные теплообменники погруженные в охлаждаемый бассейн и организация ЕЦ в схеме ПГ-ТО. За исключением правильной конструкции и расчетов, теоретически тут проблем нет. Но сразу возникает несколько вопросов, из которых главные уже были озвучены выше: «А как же быть с уровнем первого контура? Как обеспечить циркуляцию по первому контуру?» Вопросы эти, очень важны. Без детального объяснения, это остается серьезной проблемой дизайна и серьезным сомнением в правильности принятых технических решений.
  • Третий канал (резервный, работает при аварии основной системы отвода тепла и/или как дополнение ко второму каналу). Организация циркуляции из заполненного водой контейнмента, в который погружен реактор, в опускную часть реактора через специальные патрубки на его корпусе.

Возможно ли это при разомкнутом контуре, когда ТН-1 выпаривается в контейнмент, и конденсируясь на охлаждаемых стенках контейнмента, попадает его нижнюю часть и оттуда, через патрубки попадает в опуск реактора и затем снова в АЗ. Довольно странная схема и с точки зрения надежности (а ну как откажет один из клапанов, или того хуже сработет на мощности), и с точки зрения обеспечения теплоотвода. Но этот вариант интересен, а обсуждать его “в воздух”, без оппонентов, бессмысленно. И снова, здесь же, появляется интересный вопрос неоднократно звучавший выше, по отводу тепла от АЗ и наличии циркуляции по 1К. Правда в этом случае, уровень явно будет “потерян”.

 

3.2.   СИСТЕМЫ БЕЗОПАСНОСТИ LW SMR НА ПРИМЕРЕ ПРОЕКТА NuScale

Рассмотрим работу систем безопасности представленных в названном проекте. Особенно интересна работа, систем пассивной безопасности и расхолаживания при авариях, отказах и соответственно при срабатывании а/з реактора. Проект NuScale оговаривает две системы: уже упоминавшуюся выше CHRS (отвод тепла через контейнмент) и DHRS (отвод тепла через ПГ и второй контур).

 

3.2.1.   Работа DHRS

Попробуем разобрать ситуацию с работой системы расхолаживания со срабатыванием а/з реактора, по какому-либо неприятному сигналу. Например полное обесточивание установки или авария турбинной части установки, при которой невозможен сброс пара в ГК, т.е. авария основной системы отвода тепла.

Начнем с первого из двух сигналов а/з упомянутых выше: потеря электропитания всеми потребителями установки. В такой ситуации последовательно происходит следующее:

  • Теряют питание ИМ СУЗ и поглотители под собственным весом опускаются/вводятся в АЗ, заглушают цепную реакцию
  • Прекращается подача ПВ в ПГ (на выбеге насосы подачи АВ продолжают частично заполнять ПГ водой). Временные задержки срабатывания паровой и водяной арматуры должны соответствовать задаче процесса
  • Происходит соответствующая перекладка арматуры, отключение КПС и подключение систем безопасности, в данном случае DHRS
  • Следует помнить, что ни одна из систем управления не работает и контроля за параметрами тоже нет, это в самом худшем варианте.

В принципе, этих вводных достаточно для первичного анализа представленной на схеме системы DHRS NuScale. В особенности/преимущества представленной системы включены:

  • Два независимых ветки подачи ПВ в 2 ПГ. Это значит, что схема, в принципе соответствует корабельной, с двумя бортами (четырьмя секциями ПГ, по 2 на борт). Каждая такая ветвь должна обеспечить снятие пика тепловыделений после сброса а/з и продолжить отвод тепла от АЗ остановленного реактора достаточно длительное время, до организации работ по ликвидации аварии и подключении в работу насосного оборудования установки
  • После отключения питания обоих ПН (по условию рассмотрения нами ситуации произошло обесточивание, в ином случае смысла в этом нет) пусковые ПН не запускаются. Мы уже отмечали, что какое-то, довольно короткое время основные ПН работают на выбеге и по инерции продолжают подавать ПВ в ПГ. Обычно, паровая арматура закрывается быстрее, чем арматура на трубопроводах ПВ. Таким образом, при снижающемся в этот момент времени тепловыделении в АЗ, максимально заполняется водой ПГ
  • В это же самое время, должна осуществляться перекладка арматуры подключающая систему пассивной безопасности. Обычно арматура системы безопасности работает в противофазе с аппаратурой на основных паро- и трубопроводах ПВ
  • Выпаривание ПВ в ПГ отводит существенную часть тепла аккумулированного теплоносителем и выделяющегося в АЗ в первые секунды после сброса а/з, и как показывает практика (не могу знать, что в реальности показывают расчеты NuScale), ПГ может быть полностью осушен (см. выше). Пар частично вытесняется в паропроводы и обратным током вытолкнет воду в трубопроводы ПВ, на короткое время остановит поступление воды в ПГ. Вода под давлением, из аккумуляторов запаса воды будет проталкиваться в ПГ. Но, указанная в данных проекта длина трубок ПГ очень велика, по данным NuScale до 22 метров и продавить выпаривающуюся воду в трубопроводы такой протяженности очень затруднительно. Кроме того, в первые моменты времени в ПГ будет образовываться много пара и он практически остановит поступление ПВ в ПГ. Разумеется, для детального анализа надо иметь на руках данные и разговаривать с расчетчиками более конкретно
  • В первые моменты после закрытия паровой арматуры, резко увеличивается объем пара в контуре системы DHRS и пар выдавливает ПВ из ПГ встречным движением. В этот момент, пар может попасть даже в компенсационные баки и там происходит его конденсация. Этот момент может быть определен как паровой режим работы DHRS
  • В этот же момент необходимо следить за параметрами первого контура. При минимальном перепаде на участке АЗ-ПГ циркуляция может быть затруднена. При этом, важно следить за уровнем теплоносителя в первом контуре. Если он будет разомкнут, то возникает вопрос отвода тепла и вероятно проблема охлаждения АЗ и далее по цепочке все отрицательные последствия с перегревом
  • Постепенно пар конденсируется (смесительная конденсация в баках DHRS), и циркуляция переходит в паро-водяной режим. ПГ заполняется водой из системы и циркуляция по контуру надежно устанавливается. Но самыми важными для АЗ будут именно первые несколько минут
  • Далее, система переходит в водяной режим циркуляции при ЕЦ и теплоотвода. В это время подразумевается подключение систем установки, но это не значит, что возможностей системы не достаточно для теплоотвода и без помощи прочих систем установки. Вся подача ОВ в ПГ осуществляется из системы DHRS, в емкостях (аккумуляторах запаса воды) которой содержится некоторый резерв очищенной воды системы, резерв этот должен быть достаточен, для организации работы системы во всех режимах. Но на схеме нет очень важных частей системы, которые заканчивают процесс расхолаживания
  • Теплоотвод осуществляется в довольно большой бассейн, как это показано на презентациях проекта NuScale. Но может осуществляться также и в специальные цистерны, или же иную, резервную систему охлаждения, например через градирню или даже воздушный теплообменник.

Вторая группа сигналов, по которым должна включаться в работу DHRS возможна по нескольким причинам. Но при этом, есть существенное отличие от разобранного нами режима “обесточивание”. Если системы установки имеют электроснабжение и находятся в работе, это означает, что после сброса а/з развитие сценария возможно по двум направлениям:

  • ПВ продолжает поступать в ПГ, так как главный конденсатор в порядке и задействован, загрязнения конденсата нет, подача охлаждающей воды происходит по обычной схеме, а сигнал а/з связан с отказом работы турбины или иного оборудования ПТУ
  • ПВ в ПГ поступает только от ЦЗПВ (ограниченный объем) и ГК выведен из работы, например, по причине отсутствия охлаждающей воды или по причине неплотности трубной системы.

В принципе, эти режимы менее напряженные, чем первый и их детальный анализ возможен при наличии более точного списка оборудования и схем систем установки. Но в обоих случаях, эти режимы практически не отличаются от режимов штатного вывода установки. И могут быть резервированы работой DHRS.

 

ПРИМЕЧАНИЕ: Еще раз необходимо напомнить о детальном разборе работы системы первого контура в аварийных режимах. Это отдельная и серьезная дискуссия, которая рано или поздно потребуется разработчикам. Элементарный анализ показывает, что как только уровень в реакторе будет потерян, разомкнется контур циркуляции и теплоотвод от АЗ будет серьезно затруднен. Если циркуляции по контуру не будет, как поведет себя АЗ? Как будет вести себя топливо и оболочка ТВЭЛов при выпаривании и неочевидно достаточной конденсации в верхней части корпуса? Насколько верно была поставлена задача для расчета такой аварийной ситуации? Все ли выполненные расчеты достоверны и верифицированны?

По моему мнению, для продолжения охлаждения АЗ и отвода остаточных тепловыделений системой DHRS, необходима организация циркуляции ТН по первому контуру, в режиме ЕЦ. Источник тепла, в виде остаточных тепловыделений, в АЗ присутствует, а это значит, что для организации циркуляции, ПГ в верхней части реактора должен охлаждаться. Иначе движения теплоносителя по контуру не добиться. На первый взгляд это аксиома, но некоторые специалисты так не считают. Конечно, можно постараться отводить избыточное тепло через стенку корпуса реактора, для этого в NuScale придумали дополнительную систему CHRS. Но этот способ имеет свои недостатки и скорее должен быть дополнительным, а не основным. Эта система эффективна для отвода очень незначительных тепловыделений, и никак не предназначена для отвода пиковых тепловыделений сразу после сброса а/з. И вероятно, должна включаться в работу в какой-то момент, лишь поддерживая работу DHRS. Ниже поговорим об этой схеме.

 

3.2.2.   Работа CHRS

Работает ли CHRS при полном обесточивании? И в какие режимы предполагается ее использование? В какой момент она подключается к работе? Оставим, на время, эти вопросы в стороне. Рассмотрим то, как работает система CHRS абстрактно, в отрыве от обоснования аварийного режима. В начале заметим, что NuScale уже изменило первоначальный дизайн этой системы, и подключения выполнены не к парогенератору, как это указано в патенте #8,170,173, а непосредственно к корпусу реактора. Это косвенно указывает на то, что расчеты не дали желаемого результата, а первично предложенная система не подтвердила свою эффективность уже на начальном  этапе проектирования.

С этого места начинается самое интересное, что требует расчетов и широких дискуссий научно-технической общественности. В итоге, после определенных манипуляций контур циркуляции CHRS размыкается и по задумке проектанта должна брать воду из зазора, между контейнментом и корпусом реактора, через 2 патрубка с двумя клапанами на каждом, обеспечивать подачу ее в опускной участок реактора, далее, происходит подогрев и кипение ТН в АЗ, пар поднимается вверх, выдавливается в контейнмент через вентиляционные клапана (2 независимые линии), создает избыточное давление в верхней части контейнмента, конденсируется на его стенках. Как мы помним, контейнмент помещен в бассейн и охлаждается через стенки. Конденсат, стекает вниз по внутренним стенкам и попадает снова в объем из которого через патрубки подается в корпус реактора. Вполне возможно, что система будет обеспечивать надежную работу, особенно в режимах отвода тепловыделений после снятия пиковых тепловыделений в первые моменты после срабатывания а/з. То есть, и судя по всему, CHRS выполняет вторичные функции и не рассматривается, в качестве приоритетного канала отвода тепла от АЗ в аварийных режимах.

 

3.2.3.    Работа первого контура 

Приступим к самому важному. К рассмотрению работы 1К в различных, уже упомянутых выше режимах. Если при аварийной ситуации 1К окажется разомкнут, как это предполагают специалисты NuScale, уже к 150… 200-й секунде после сброса а/з (см. графики отчетов), то ни о какой надежной циркуляции по контуру внутри реактора речи не идет. Несмотря на то, что пик остаточных тепловыделений снимается довольно быстро, что необходимо подтвердить расчетами, далее предстоит довольно рутинный, затяжной по времени, отвод остаточных тепловыделений. Система, или комбинация нескольких систем, по требованиям безопасности должны отработать минимум 3 суток (72 часа – время разотравления, критичная величина влияющая на запас реактивности к моменту пуска, в конце кампании). В запасе DHRS, по задумке проектантов, имеется около 15,000 м3 воды. Огромный объем, в закрытом пространстве, с обеспечением качества воды, циркуляцией, сменяемостью и вероятно с собственной системой очистки. Ведь это единственный источник запаса воды высокой чистоты на установке. Для примера, на корабельных установках  такой запас составляет примерно в 1,000 раз меньше, а на наземных установках малой мощности примерно в 100.

Насколько эффективен теплообмен в АЗ в этот период? Установится ли за это время ЕЦ по контуру DHRS если нет циркуляции по первому контуру? Это вопросы требующие ответа не только по результатам расчетов, но и по результатам размышлений и первичной экспертной оценки. В любом случае, если осуществляется проливка ПГ, а пар, затем пароводяная смесь, а затем и отепленная вода циркулируют по контуру, как минимум требуется не только канал теплоотвода, но и источник тепла, коим в данном случае является пар из АЗ. И как интенсивно будет передаваться тепло от образующегося пара в ПГ, если контур циркуляции в реакторе разомкнут?

Для резонного и надежного управления процессом расхолаживания планируется, что системы будут задействованы до тех пор, пока не установится режим стабильного теплоотвода/теплообмена. Пока ответить на все поставленные вопросы трудно, достаточно ли этого. Некоторые выводы указывают, что не достаточно. Нет более детального описания схем, нет расчетов, а представленные презентационные материалы годятся скорее для показа широкой общественности, нежели для технических дискуссий.

Если же нет циркуляции по контуру, а судя по графикам из доклада NuScale по системам безопасности, контур гарантированно размыкается через 150… 200 сек после сброса АЗ. А значит:

  • Вариант первый, без подачи воды в реактор, не обойтись. Для этого, надо сбросить давление в реакторе, открыть клапана вентиляции в верхней части корпуса. Что мгновенно повлечет за собой объемное вскипание нагретой воды. Есть риск полностью потерять контроль над теплообменом в АЗ
  • Вариант второй, предусмотреть циркуляцию на пониженном уровне ТН-1 в корпусе, что не реализовано в конструкции, а при реализации потребует серьезных доработок. И вряд-ли возможно с представленной конструкцией ПГ
  • Вариант третий, … (не представлен)

Но это пока предположения. Таким образом, по предложению специалистов NuScale, в разбираемой ситуации (похоже, что это течь 1К) отвод остаточных тепловыделений осуществляется через гильзу и стенки корпуса реактора и, в основном, за счет кипения теплоносителя в АЗ. Кипение весьма эффективный теплоотвод, бесспорно. Но если это течь, зачем открывать контур? Действительно, существует несколько мнений по процедуре локализации такой аварии. Никакими расчетами на этой стадии тут пока не поможешь.

Но все же, как в этом случае работает система отвода тепла из контейнмента? Совсем не лучший выход, это погрузить реактор в бассейн с 4-мя миллионами (!!!) галлонов воды. Понятно, что в большей степени эта система предназначена для отвода тепла при серьезных течах, потерях ТН-1 и прочих авариях, как система “последнего шанса”. А что делать со всеми остальными реакторами в составе АЭС? А как отводить тепло от самого бассейна в такой ситуации? В любом случае, это более чем сомнительное техническое решение, подверженное серьезной критике как со стороны конструктивной, так со стороны эксплуатационной.

 

Выводы: 

А теперь надо вернуться к началу обзора и посмотреть на декларируемые (например на сайте NuScale) преимущества подобного проекта. Действительно ли они существуют эти преимущества? Удастся ли их добиться в существующих условиях?

  • Повышенная безопасность 
  • Простота конструкции
  • Малые габариты 
  • Экономичность. 

Это вряд-ли…

 

Leave a Reply