(в работе)

В докладе конференции «КЯЭ-14» Перспективы развития ВМФ и использования ядерной энергетики на кораблях ВМФ [1] речь шла о модульной ядерной энергетической установке (ЯЭУ), как части проекта разведывательно-ударного атомного гидроплана «Неукротимый», выполненного в 2011-2013 гг. в инициативном порядке группой ученых, инженеров, курсантов Военного учебно-научного центра ВМФ.
Было предложено рассмотреть результаты этого проекта на государственном уровне как концепцию «Океанский прорыв», чтобы в кратчайшие сроки освоить и защитить океанский шельф, материковые склоны и океанское ложе, принадлежащие России, и обеспечить ускоренное развитие Арктического побережья России и территорий Сибири и Дальнего Востока.
Не только атомные гидропланы (АГП) представляют собой технику двойного назначения, но и модульная ЯЭУ, благодаря своей компактности, ремонтопригодности, безопасности, транспортабельности и экономичности эксплуатации, простоты утилизации и захоронения становится перспективной в целях мирного использования на транспортных судах на воздушных подушках, на судах-спасателях, плавучих атомных станциях и в качестве стационарных малых атомных электростанций (АЭС) и атомных станций теплоснабжения (АСТС). В приложении 1 [1] представлены конструктивные и инновационные решения, позволившие решить проблемы с тактико-техническими характеристиками гидроплана и его ЯЭУ.
Главной причиной, сдерживающей освоение глубин, является отсутствие компактной энергетической установки требуемой мощности и автономности. Предлагаемый проект успешно решает и эту проблему. На рис. 1. представлены внешний вид неатомной малой ПЛ «Пиранья» и проект разведывательно-ударного атомного гидроплана «Неукротимый».

Рис.1. Сравнение внешнего вида неатомной малой ПЛ «Пиранья с разведывательно-ударным атомным гидропланом «Неукротимый»

В основу модульной ЯЭУ был положен проект блочной ЯЭУ с реактором СВБР-10, (получившим название «Ангстрем»), который победил в конкурсе среди малых АЭС в 1994 г. Из этого проекта в качестве проверенных конструкций взяты гетерогенная активная зона и магнитогидродинамические насосы для прокачки теплоносителя (патент №-170095, 1991), повышающие экономичность, надежность и радиационную безопасность, и снижающие шумность установки [2].

Прямоточный прямотрубный парогенератор

Для создания модульной ЯЭУ необходимо применение прямотрубных, прямоточных парогенераторов (ПГ) без пароперегревателей, сепараторов, с внутритрубным течением жидкометаллического теплоносителя (ЖМТ), охватывающего магитогидродинамический насос (МГДН). На рис.2 представлен общий вид секции прямоточного прямотрубного ПГ. Такое решение снижает объем ППУ по сравнению с СВБР-10 в 5,7 раза, а массу в 15,9 раз (в стадии патентования).

Рис.2.

Для выполнения теплового расчета прямоточного прямотрубного парогенератора была составлена программа на языке Visual Basic (VBA), встроенного в Excel. В качестве исходных данных для гидравлического расчета прямоточного, прямотрубного парогенератора использовались величины, полученные из теплового расчета.
В результате были получены следующие теплотехнические и массогабаритные характеристики прямоточного, прямотрубного ПГ с внутритрубным течением Pb-Bi теплоносителя:
– размеры трубок (Øвн – 13 мм, Øн – 15 мм, длина трубок и ПГ 1,5 м, число трубок 1402 шт.;
– диаметры ПГ(м) внутренний Øвнпг = 0,502, наружный Øнпг = 1,073;
– тепловая мощность Q0 = 21,5 МВт, паропроизводительность ПГ при параметрах пара Р1 = 5 МПа, t1”= 264°С G0= 9,671 кг/с;
– параметры питательной воды на входе в ПГ – Р3= 5,0241 МПа, t3= 135°С
– потери давления рабочего тела в ПГ (МПа) ΔрПГ2к = 0,0241;
– параметры теплоносителя (°С) tтвх= 480, tтвых= 330;
– расход (кг/с) Gт= 1005;
– потери давления теплоносителя в ПГ (МПа) ΔрПГ1к = 0,005517;
– масса ПГ осушенного (кг) Мпго = 661,9, заполненного Мпг = 4509.

Реактивно-роторный двигатель

Следующим элементом, позволившим создать модульную ЯЭУ, стал реактивно-роторный двигатель (РРД) [3]. РРД – технологический прорыв в двигателестроении. Он содержит роторы нечетных и четных ступеней и связанные с ними торцевые генераторы левого и правого вращения. Роторы (рис. 3) выполнены по форме сверхзвуковых сопел Лаваля. Сопла расположены на дисках по окружности, а между роторами образовано кольцевое пространство. Каждое сопло Лаваля выполнено с входом и выходом на цилиндрических поверхностях соответствующего кольца и изогнуто таким образом, чтобы, сохраняя направление потока рабочего тела перпендикулярным к оси вращения, обеспечить поворот его в противоположное от входа направление.

Рис.3. Поперечные разрезы межканальных профилей ступеней и спаренных дисков РРД

В расчет заложен расход пара 2 кг/с, а в ANSYS для выбранной конфигурации сопел полученный расход составил 1,55 кг/с. РРД, сохраняя все преимущества известной турбины Юнгстрема, позволяет при меньшем в 4 раза числе ступеней, по сравнению даже с реактивной турбиной, увеличить теплоперепад за счет скачка уплотнения, срабатываемый рабочим телом, и, соответственно, увеличить внутренний КПД и надежность двигателя, существенно уменьшив его массу, габариты и стоимость.
Отсутствие рабочих лопаток и вала в РРД, наличие трансзвукового течения рабочего тела в соплах и скачка уплотнения между ступенями делает такой двигатель эффективным при любой влажности и невысоких требованиях к чистоте рабочего тела, повышает его маневренность, надежность и экономичность по сравнению с известными конструкциями паровых и газовых турбин. Расчеты РРД показали, что для расхода в 1,55 кг/с через один спаренный диск толщиной в 24 мм создается мощность 1,24 МВт, а удельная масса двигателя – 0,213 кг/кВт. Простота и эффективность конструкции РРД делает двигатель конкурентоспособным даже на начальных стадиях его реализации.

Забортный самопроточный главный конденсатор

Из представленной на рис. 4 схемы можно понять принцип действия модульной ЯЭУ. Для модульной ЯЭУ была выбрана максимально компактная конструкция забортного, самопроточного с внутритрубной конденсацией пара главного конденсатора, представляющего собой (рис. 5, 6) носовой и кормовой блоки из 4-х секций каждый, с числом трубок (Øвн – 15мм, Øн – 22мм , длина 1,5 м) в секции 840 шт. и массой трубок в секции 1274,16 кг. Суммарная масса кормового и носового забортных конденсаторов с учетом паровых труб, пароприемников и конденсатосборников составляет 18357 кг, что в 2,7 раза меньше равного по тепловой мощности титанового конденсатора с межтрубной конденсацией пара. А отказ от расположения главного конденсатора (ГК) внутри прочного корпуса ведет к резкому уменьшению МГХ ГК за счет исключения громоздких циркуляционных трасс с циркуляционными насосами и донными захлопками, составляющими до половины объема и массы корабельного главного турбозубчатого агрегата. Внутритрубная конденсация рассматриваемого ГК дает выигрыш в прочности (тубки работают на сжатие), а значительный (на порядок) рост скорости пара в трубках ведет к росту коэффициента теплоотдачи, что снижает число и длину трубок ГК. Вид сбоку ГК представлен на рис. 6.

Рис.5. Вид сзади энергетического блока. Показана только часть трубок кормовых секций ГК, крепления для легкого корпуса и двигатель кормового водомета не показаны.

Рис.6. Кормовой двигательно-движительный комплекс АГП

Двигательно-движительный комплекс

Другая прорывная технология касается двигательно-движительного комплекса (ДДК). От правильного выбора принципа действия ДДК и его схемы расположения во многом зависит эффективность движения, маневренность гидроплана, его надежность и живучесть. Повышение пропульсивных показателей водометных движителей позволит им конкурировать с винтовыми, если при этом удастся сохранить такие преимущества водометов, как пониженный уровень шумоизлучения и вибраций, и убрать такие недостатки гребных винтов, как волнообразования (выброс вращающейся струи), незащищенность рабочего органа движителя ото льда и других плавающих объектов, и низкие маневренные качества. Проведенные исследования [4,5] по повышению пропульсивных качеств водометов показали, что они вполне способны конкурировать с винтовыми движителями. Достигается это путем отбора жидкости из пограничного слоя через щелевые отверстия по периметру АГП, расположенное, как это показано на рис 6, нормально к набегающему потоку на стыке горизонтального участка корпуса и кормового подзора, имеющего угол наклона ψ = 12–13,5°.

Предлагаемый способ отбора жидкости приводит к перераспределению гидродинамического давления по наружной поверхности АГП, созданию подъемной силы Жуковского, действующей в направлении движения, к уменьшению толщины пограничного слоя и общего сопротивления АГП. По виброакустическим параметрам предложенное устройство также обладает рядом преимуществ по сравнению с винтовым движителем, а именно, осевой насос, расположенный внутри обтекателя, и его рабочее колесо закреплено на валу между двумя опорными подшипниками, поэтому уровень вибраций ниже, чем у гребного винта. Кроме этого, в водоводе движителя может быть размещено шумопоглощающее устройство, что для гребных винтов не осуществимо. Использование в осевом насосе лабиринтового уплотнения позволит расширить диапазон частот вращения насоса в безкавитационном режиме, который с ростом глубины плавания исключается вообще.

Поскольку предлагается использовать осевой насос, то в этом случае можно существенно увеличить частоту вращения вала и осуществить безредукторную передачу энергии от двигателя к движителю. А для гидроплана получить значительный выигрыш не только за счет размеров главного упорного подшипника, но, главным образом, за счет МГХ гребных электродвигателей, которые должны быть погружными двигателями переменного тока [6] с частотой вращения 50 об/с. Как показали исследования, предложенная компоновка позволяет повысить также гидродинамическую эффективность движителя за счет специальных устройств, размещаемых в водоводе, а именно вихрегенераторов.

Тепловой аккумулятор – биологическая защита

Следующей важнейшей инновацией, дающей преимущества модульной ЯЭУ, является применение теплового аккумулятора – биологической защиты (ТА-БЗ), который исключает применение АБ – 162,9 т, ДГ- 13,7 т, обратимых преобразователей – 24 т, железоводной защиты – 350 т. Только по этой причине на 627,9 т снижается масса, повышается надежность, экономичность ЯЭУ, и обеспечивается форсажный режим движения АГП: 41 узел в течение 72 мин; а при сброшенной аварийной защите АГП на скорости экономхода (10 уз) может двигаться в течение 11 ч. 19 мин. Компактность БЗ и всей установки обеспечивается принципами совмещения в одном элементе нескольких свойств и подбора наилучшего материала. В качестве поглотителя нейтронов используется фториcтый литий с высокой поглощающей способностью – 71 барн, температурой плавления – 870 °С, представляющий собой порошкообразный химически пассивный материал с небольшой плотностью 2,6 г/см3, высокой теплоемкостью Ср= 58,67 Дж/моль∙К (при 700°С) и хорошей теплопроводностью 14,2 Вт/(м∙К) (при 26 оС). Суммарная масса ТА-БЗ составила 35,42 т, из которых 27,38 т – масса фторида лития, а 8,04 т – суммарная масса термоэлектрических нагревателей и резервных парогенераторов. Суммарная масса всей МЯЭУ составила 116 т [17].

Преимущества МЯЭУ

Предложенные конструктивные решения позволят МЯЭУ приобрести модульность, высокую ремонтопригодность, на порядок более низкую удельную массу по сравнению с существовавшими и строящимися СВБР, возможность надежной работы на глубине до 5000 м.
В АГП применена единая корабельная электро-энергетической система напряжением генерирования 690 В и частотой генерирования 200 Гц с мощными статическими преобразователями электрического тока из переменного в постоянный и, наоборот, с регулируемым напряжением и частотой тока, дающая заметный выигрыш в МГХ всей ЯЭУ.
МЯЭУ на промежуточных режимах имеет максимальную, по сравнению с существующими корабельными установками, экономичность. Скорость экономхода составила 10 уз., а расход энергозапаса на милю пройденного пути qэх= 0, 32 МВт∙ч/миля.
Благодаря таким преимуществам МЯЭУ значительно превосходит ближайший свой аналог энергетической установки с СВБР-10. Она может транспортироваться не только железнодорожным, но и автомобильным транспортом. Модульная ЯЭУ с СВБР, РРД и ТА-БЗ открывает путь развитию малой атомной энергетики в районах с неразвитой инфраструктурой, как самая транспортабельная, экономичная и легко выводимая из жизненного цикла атомная станция. В этом убеждает сравнение, представленное на схеме рис. 7.

Рис.7. Сравнение СВБР-10 и модульной ЯЭУ с реактивно-роторными двигателями, ТА -БЗ и объемов строительно-монтажных работ на их сооружение

МЯЭУ более перспективна для применения на плавучих АЭС. Как показано на рис. 8, модульная ЯЭУ с реактивно-роторными двигателями и ТА-БЗ с точки зрения стоимости постройки, оборудования стоянки и возможностей использования имеет очевидные преимущества.

Рис.8. Сравнение СВБР-10 (проект ФГУП «Гидропресс») и модульной ЯЭУ с реактивно-роторными двигателями и ТА-БЗ (проект ВУНЦ ВМФ) и объемов строительно-монтажных работ на их сооружение

Суда на воздушной подушке

Многообразие вариантов использования судов на воздушной подушке (СВП) в транспортной системе страны и специфические особенности решения транспортных проблем в труднодоступных районах Севера, Северо-Востока и Сибири обусловливают необходимость использования СВП для оперативной доставки небольших партий грузов, особенно в межнавигационный период.

В пользу такого подхода свидетельствуют не только зарубежный опыт доставки грузов с помощью СВП, но и огромные северные и северо-восточные территории нашей страны [19], еще со времен М.В.Ломоносова стремящиеся прирастить могущество России. Большую заинтересованность в этом вопросе проявил Фонд перспективных исследований РФ, заключивший соглашение о сотрудничестве с Санкт-Петербургской государственной художественно-промышленной академией им. А.Л.Штиглица в решении проблем развития отечественных СВП.

Суда на воздушной подушке, имея большую скорость (~50 км/ч) передвижения по льду, бездорожью, смогут успешно заменить (или дополнить) ледоколы на Северном морском пути, в случае необходимости быстрой доставки грузов. Они особенно незаменимы, когда толщина морского и океанического льда превышает 2 метра. СВП также незаменимы на реках Сибири, когда те мелеют после ледохода или покрыты льдом. У некоторых северных рек протяженность навигационного периода составляет всего 20-25 дней в году [19]. Однако невозможность иметь на борту такого судна большое количество топлива существенно ограничивает дальность его перехода. Учитывая протяжённость Севморпути, и необходимость доставки грузов вглубь Сибири по рекам, особенно в межнавигационный период, предлагается в качестве главной энергетической установки судна на воздушной подушке использовать модульную ядерную энергетическую установку [20]. Особенности размещения МЯЭУ и конденсации пара на атомном СВП показаны на рис. 9.

Рис.9. Особенности размещения модульной ЯЭУ в судне на воздушной подушке

ЯЭУ для спасательных судов

Многообразие вариантов использования корабельных энергетических установок практически всегда приводило проектантов к мысли, что наилучшим видом энергетической установки для спасательных судов является дизельная или дизель-электрическая энергоустановка. Традиционно принято считать, что это самый экономичный и лёгкий вид установок, наиболее пригодный для судов небольшого водоизмещения, и, конечно, уж никак не ЯЭУ, традиционно считающаяся тяжёлой.

В пользу такого подхода к проектированию ЭУ для спасательных судов говорит многолетний опыт не только России, но и других странах. Но, как показано в [21, в качестве ГЭУ спасательного судна можно использовать МЯЭУ, представленную в данной статье. Отличаться она будет только конструкция и размещением секций забортного конденсатора. На рис. 10 показаны особенности размещения одной из секций ЗГК. В отличие от АГП и АСВП секции ГК предлагается размещать побортно под ватерлинией с организацией самопротока и естественной циркуляции при стоянке или даже при движении задним ходом.

Рис.10. Вид сбоку нижнего ряда верхней секции забортного конденсатора правого борта

Компактность, надежность и безопасность МЯЭУ открывает огромные перспективы ее использования в Вооруженных силах, на транспорте, в энергетике России.

 

Leave a Reply