Screen Shot 2016-09-03 at 10.06.47 PM2 сентября, корабелы Балтийского завода установили на головной ЛА «Арктика» проекта 22220 первый из двух парогенерирующих блоков (ПГБ), входящих в состав РУ РИТМ-200 (смотри также материалы: 80 и 83).

РИТМ-200, новейшая РУ для ледокольного флота, разработанная ОКБМ им. Африкантова. РУ входит в состав ГЭУ ЛА и включает в себя два ПГБ мощностью 175 МВт каждый.

Монтаж реакторной установки, одна из ключевых производственных операций процесса строительства ЛА. Вес одного ПГБ РУ РИТМ-200 составляет ~ 180 тонн. Установку ПГБ в корпус ЛА производили при помощи плавучего крана «Демаг». Монтаж второго ПГБ должен состояться в течение месяца.

Комментарий от редактора: 1. Четыре “рога” по разным сторонам ЯР, это гидрокамеры интегрированных циркуляционных насосов первого контура. Насосы расположены не симметрично. Что интересно, ЦНПК с частотным регулированием, это интересно с точки зрения алгоритмов управления на частичных мощностях.

2. Заглушки, их 12 (несомненно ПГ кассетного типа расположенные на периферии в расположены внутри корпуса в кольцевом зазоре) по окружности в верхней части корпуса реактора, линии пара от парогенераторов расположенных внутри корпуса. Но самое странное, получается, что секций ПГ не 4, а 3. Это очень занятно и требует осмысления причины такого конструкторского решения.

3. Кстати, крышка ЯР крепится вытяжными шпильками. Традиционно, а не приварная как предполагалось ранее…

А здесь еще и видео от “РосАтома”:

 

А так его (ЯР) доставляли до места из Подольска (см. фото ниже). А как его изготавливали см. материал 80.

Screen Shot 2016-09-03 at 10.35.19 PM

 

 

Источник: http://tnenergy.livejournal.com/

 

Пока NuScale изобретает велосипед и продает свой, морально устаревший еще до рождения, реактор “всем лишь бы кто купил”, мимо автора этого поста в ЖЖ прошла сварка первого корпуса судового реактора РИТМ-200 (см. первое фото ниже).

reaktor

Изготовление первого корпуса реактора РИТМ-200 для нового линейного атомного ледокола (ЛА). 

Но, так как ППУ ледокола имеет два реактора в своем составе, так что второй автор уже не упустил. Ниже в основном фотографии.

Screen Shot 2016-07-12 at 4.48.18 PM

Изготовление второго корпуса реактора для ледокольной РУ РИТМ-200. Обратите внимание на отсутствие шпилек крепежа крышки, что интересно.  

Водо-водяной реактор проекта ОКБМ им. Африкантова (разработчиков всех реакторов атомного флота) должен стать основой ГЭУ нового атомного ледокола пр. 22220 (см. подробный ролик).

Строящийся ЛА “Арктика”, куда встанет “РИТМ-200”. В центре виден реакторный отсек.

Это реактор интегрального/модульного типа (кассетные ПГ расположены внутри корпуса реактора См. фото). На низкообагащенном урановом топливе с обогащением до 20% и кампанией до 7 лет. Тепловая мощность реактора – 175 МВт, в составе ППУ он работает на паровую турбину ТГ мощностью 36 МВэ. Корпус первого реактора уже проходит гидроиспытания в ЗИО, чтобы затем отправится в ОКБМ на сборку внутриреакторных конструкций.

Технические данные реакторной установки РИТМ-200.

Разрез РУ (стендовый/выставочный макет).

Чуть выше горизонтального патрубка подвода теплоносителя от насоса видны кассетные парогенераторы, располагающиеся возле обечайки корпуса реактора. Они же видны на правой “отрезанной” части макета. Это решение пришло из реакторов ВМФ и для гражданских морских реакторов является рывком в плане улучшения массо-габаритных показателей и надежности систем. ППУ РИТМ-200 в составе ГЭУ с вспомогательными системами показан в более ранних постах об этом реакторе у РУ, 25.1 и 25.2.

Два таких модуля размером 6х6 метров и весом 1100 тонн (биозащита не показана) и будут составлять ГЭУ ледокола “Арктика” (рис. 5).


Сравнение РИТМ-200 с предшественником КЛТ-40, проигрывающим по сложности системы компенсации объема и давления (СКОиД), массе и габаритам.

ОКБМ в свое время порадовал вот такой фоткой СУЗов реактора РИТМ-200.

Загадка, что же такое раскладывают там эти парни в белом.

 

Источник: http://tnenergy.livejournal.com/30625.html?view=675233#t675233

Принципы проектирования эффективной системы охлаждения Активной Зоны (АЗ) Ядерного Реактора (ЯР) с Естественной циркуляцией (ЕЦ) и осуществление контроля за параметрами при его эксплуатации

 

Введение. Формирование проблемы:

Любые проектные работы связанные с созданием ЯР и его компонентов, в основе своей должны основываться на обеспечении технической безопасности. Особенность технической безопасности АЭУ заключается в том, что она основывается на трех составных частях:

  1. 1.    ЯБ, исключающая возникновение ядерной аварии при неконтролируемом высвобождении реактивности.
  2. 2.    РБ, обеспечивающая нормальную радиационную обстановку для работы персонала и для окружающей среды в любых условиях эксплуатации, и имеющую строгую градацию классифицирующую уровень аварийной ситуации.
  3. 3.    Теплотехническая безопасность, повторим основное ее положение: создание и обеспечение условий эксплуатации, при которых АЗ выполняла бы свои функции в течение гарантированной кампании и исключалась бы возможность попадания в т/н 1К продуктов распада (деления) из топливной матрицы поврежденных ТВЭЛ(ов), во всех режимах работы ЯР. В том числе, при авариях и в иных нештатных ситуациях. Иными словами, нарушение теплового баланса между тепловыделением и теплоотводом в АЗ и последствия такого(их) нарушения.  

Все эти условия обеспечения технической безопасности должны выполняться на всей протяженности жизненного цикла АЗ, во всех/любых режимах эксплуатации, включая:

  • нормальная работа,
  • ожидаемые/планируемые переходные режимы – маневры мощностью,
  • не ожидаемые переходные режимы вызванные, событиями/отказами
  • экстремально неожиданные события, аварии, в том числе вызванные внешними факторами (т.н. события типа 1…4)
  • операции по перегрузке топлива.

Для определения любого из перечисленных выше эксплуатационных режимов сформирована классификация по 4-м уровням условий высвобождения радиоактивности и значению т.н. Total Effective Dose Equivalent (TEDE). Но при оперативном контроле за поведением ЯР не всегда целесообразно подходить к анализу исключительно лишь с т.з. понимания уровня возможного высвобождения радиоактивности. Для оператора ЯР эта оценка скорее формальна, чем удобна.

 

(Продолжение после публикации)

 

ОБЗОР И АНАЛИЗ НЕКОТОРЫХ ТЕХНИЧЕСКИХ РЕШЕНИЙ ПРИМЕНЕННЫХ ПРИ РАЗРАБОТКЕ АМЕРИКАНСКИХ LW SMR 

 

Часть 2. О системах безопасности малых реакторов

 

3.   О РАБОТЕ СИСТЕМ БЕЗОПАСНОСТИ УСТАНОВОК LW SMR

Отдельный и очень детальный разговор требуется для анализа работы систем безопасности и вывода любой установки малой мощности. Абсолютно очевидно, что системы безопасности проектируемые в разных странах отличаются радикально. Это также касается и работы систем при нормальном, и при аварийном выводе. К примеру, предложенные NuScale схемные решения, на мой взгляд, абсолютно не удовлетворяют необходимым и достаточным требованиям безопасности требуемой именно для малых установок. А в США, такая концепция популярна, но для больших реакторов. Что было с этой концепцией в Фукушиме, весьма наглядно.

Во всех презентациях NuScale, да и других проектантов, указывается (декларируется) наличие надежных пассивных систем расхолаживания в конструкции установки. Но детально не рассматривается их использование, последовательность срабатывания оборудования, подключение этих систем в работу. Поэтому, в отсутствие информации приходится руководствоваться лишь относительно здравым смыслом и строить рассуждения на допущениях, догадках и понимании того, как эти системы работают. Планируется, что рассмотрение проектов прочих разработчиков будет выполнено в продолжениях анализа и других установок.

 

3.1.   КАНАЛЫ ОТВОДА ТЕПЛА ПРИ АВАРИЙНОМ РАСХОЛАЖИВАНИИ

Не требует специального обоснования постулат о том, что для безопасного вывода установки/реактора любого типа, необходимо несколько путей/каналов отвода аккумулированного в контуре тепла и остаточных тепловыделений из/от АЗ. Пока нами не рассматривается циркуляция теплоносителя первого контура, в этом процессе, а это отдельный и весьма интересный разговор. Для начала, идентифицируем каналы отвода тепла  в установке и рассмотрим требования к таким каналам:

  • Первый канал (основная система отвода тепла), это сброс пара, пароводяной смеси или воды (в разных режимах) из парогенератора через паропроводы, на главный конденсатор (ГК). При выводе установки с использованием этого канала, обычно включаются в работу пусковые питательные насосы (ППН) и работают конденсатные насосы (КН), а сброс отепленной среды осуществляется на ГК с предварительным увлажнением пара холодной водой. Затем переходит в режим сброса паро-водяной смеси и в окончании, отепленной воды. На каком-то этапе, теплоотвод переводится/переключается на системы  длительного расхолаживания.

Электро-питание при таком выводе присутствует, все задействованные системы установки работают штатно. Отвод пика остаточных тепловыделений (ОТВ) не затруднен. Реактор переводится в режим обычного (длительного) расхолаживания или в краткосрочный режим нерасхолаживания. Это зависит от характера аварии и сигнала по которому сработала а/з.

  • Второй канал расхолаживания, имеет как правило 2 независимых ветви (работает при аварии основной системы отвода тепла), включается в работу, если повреждена паровая или конденсатно-питательная система (КПС), а также ГК и/или его система охлаждения, иными словами, повреждена основная система отвода тепла. В этом случае необходим резервный канал теплоотвода. Обычно это сброс пара и/или паро-водяной смеси из парогенератора на специальные теплообменники погруженные в охлаждаемый бассейн и организация ЕЦ в схеме ПГ-ТО. За исключением правильной конструкции и расчетов, теоретически тут проблем нет. Но сразу возникает несколько вопросов, из которых главные уже были озвучены выше: «А как же быть с уровнем первого контура? Как обеспечить циркуляцию по первому контуру?» Вопросы эти, очень важны. Без детального объяснения, это остается серьезной проблемой дизайна и серьезным сомнением в правильности принятых технических решений.
  • Третий канал (резервный, работает при аварии основной системы отвода тепла и/или как дополнение ко второму каналу). Организация циркуляции из заполненного водой контейнмента, в который погружен реактор, в опускную часть реактора через специальные патрубки на его корпусе.

Возможно ли это при разомкнутом контуре, когда ТН-1 выпаривается в контейнмент, и конденсируясь на охлаждаемых стенках контейнмента, попадает его нижнюю часть и оттуда, через патрубки попадает в опуск реактора и затем снова в АЗ. Довольно странная схема и с точки зрения надежности (а ну как откажет один из клапанов, или того хуже сработет на мощности), и с точки зрения обеспечения теплоотвода. Но этот вариант интересен, а обсуждать его “в воздух”, без оппонентов, бессмысленно. И снова, здесь же, появляется интересный вопрос неоднократно звучавший выше, по отводу тепла от АЗ и наличии циркуляции по 1К. Правда в этом случае, уровень явно будет “потерян”.

 

3.2.   СИСТЕМЫ БЕЗОПАСНОСТИ LW SMR НА ПРИМЕРЕ ПРОЕКТА NuScale

Рассмотрим работу систем безопасности представленных в названном проекте. Особенно интересна работа, систем пассивной безопасности и расхолаживания при авариях, отказах и соответственно при срабатывании а/з реактора. Проект NuScale оговаривает две системы: уже упоминавшуюся выше CHRS (отвод тепла через контейнмент) и DHRS (отвод тепла через ПГ и второй контур).

 

3.2.1.   Работа DHRS

Попробуем разобрать ситуацию с работой системы расхолаживания со срабатыванием а/з реактора, по какому-либо неприятному сигналу. Например полное обесточивание установки или авария турбинной части установки, при которой невозможен сброс пара в ГК, т.е. авария основной системы отвода тепла.

Начнем с первого из двух сигналов а/з упомянутых выше: потеря электропитания всеми потребителями установки. В такой ситуации последовательно происходит следующее:

  • Теряют питание ИМ СУЗ и поглотители под собственным весом опускаются/вводятся в АЗ, заглушают цепную реакцию
  • Прекращается подача ПВ в ПГ (на выбеге насосы подачи АВ продолжают частично заполнять ПГ водой). Временные задержки срабатывания паровой и водяной арматуры должны соответствовать задаче процесса
  • Происходит соответствующая перекладка арматуры, отключение КПС и подключение систем безопасности, в данном случае DHRS
  • Следует помнить, что ни одна из систем управления не работает и контроля за параметрами тоже нет, это в самом худшем варианте.

В принципе, этих вводных достаточно для первичного анализа представленной на схеме системы DHRS NuScale. В особенности/преимущества представленной системы включены:

  • Два независимых ветки подачи ПВ в 2 ПГ. Это значит, что схема, в принципе соответствует корабельной, с двумя бортами (четырьмя секциями ПГ, по 2 на борт). Каждая такая ветвь должна обеспечить снятие пика тепловыделений после сброса а/з и продолжить отвод тепла от АЗ остановленного реактора достаточно длительное время, до организации работ по ликвидации аварии и подключении в работу насосного оборудования установки
  • После отключения питания обоих ПН (по условию рассмотрения нами ситуации произошло обесточивание, в ином случае смысла в этом нет) пусковые ПН не запускаются. Мы уже отмечали, что какое-то, довольно короткое время основные ПН работают на выбеге и по инерции продолжают подавать ПВ в ПГ. Обычно, паровая арматура закрывается быстрее, чем арматура на трубопроводах ПВ. Таким образом, при снижающемся в этот момент времени тепловыделении в АЗ, максимально заполняется водой ПГ
  • В это же самое время, должна осуществляться перекладка арматуры подключающая систему пассивной безопасности. Обычно арматура системы безопасности работает в противофазе с аппаратурой на основных паро- и трубопроводах ПВ
  • Выпаривание ПВ в ПГ отводит существенную часть тепла аккумулированного теплоносителем и выделяющегося в АЗ в первые секунды после сброса а/з, и как показывает практика (не могу знать, что в реальности показывают расчеты NuScale), ПГ может быть полностью осушен (см. выше). Пар частично вытесняется в паропроводы и обратным током вытолкнет воду в трубопроводы ПВ, на короткое время остановит поступление воды в ПГ. Вода под давлением, из аккумуляторов запаса воды будет проталкиваться в ПГ. Но, указанная в данных проекта длина трубок ПГ очень велика, по данным NuScale до 22 метров и продавить выпаривающуюся воду в трубопроводы такой протяженности очень затруднительно. Кроме того, в первые моменты времени в ПГ будет образовываться много пара и он практически остановит поступление ПВ в ПГ. Разумеется, для детального анализа надо иметь на руках данные и разговаривать с расчетчиками более конкретно
  • В первые моменты после закрытия паровой арматуры, резко увеличивается объем пара в контуре системы DHRS и пар выдавливает ПВ из ПГ встречным движением. В этот момент, пар может попасть даже в компенсационные баки и там происходит его конденсация. Этот момент может быть определен как паровой режим работы DHRS
  • В этот же момент необходимо следить за параметрами первого контура. При минимальном перепаде на участке АЗ-ПГ циркуляция может быть затруднена. При этом, важно следить за уровнем теплоносителя в первом контуре. Если он будет разомкнут, то возникает вопрос отвода тепла и вероятно проблема охлаждения АЗ и далее по цепочке все отрицательные последствия с перегревом
  • Постепенно пар конденсируется (смесительная конденсация в баках DHRS), и циркуляция переходит в паро-водяной режим. ПГ заполняется водой из системы и циркуляция по контуру надежно устанавливается. Но самыми важными для АЗ будут именно первые несколько минут
  • Далее, система переходит в водяной режим циркуляции при ЕЦ и теплоотвода. В это время подразумевается подключение систем установки, но это не значит, что возможностей системы не достаточно для теплоотвода и без помощи прочих систем установки. Вся подача ОВ в ПГ осуществляется из системы DHRS, в емкостях (аккумуляторах запаса воды) которой содержится некоторый резерв очищенной воды системы, резерв этот должен быть достаточен, для организации работы системы во всех режимах. Но на схеме нет очень важных частей системы, которые заканчивают процесс расхолаживания
  • Теплоотвод осуществляется в довольно большой бассейн, как это показано на презентациях проекта NuScale. Но может осуществляться также и в специальные цистерны, или же иную, резервную систему охлаждения, например через градирню или даже воздушный теплообменник.

Вторая группа сигналов, по которым должна включаться в работу DHRS возможна по нескольким причинам. Но при этом, есть существенное отличие от разобранного нами режима “обесточивание”. Если системы установки имеют электроснабжение и находятся в работе, это означает, что после сброса а/з развитие сценария возможно по двум направлениям:

  • ПВ продолжает поступать в ПГ, так как главный конденсатор в порядке и задействован, загрязнения конденсата нет, подача охлаждающей воды происходит по обычной схеме, а сигнал а/з связан с отказом работы турбины или иного оборудования ПТУ
  • ПВ в ПГ поступает только от ЦЗПВ (ограниченный объем) и ГК выведен из работы, например, по причине отсутствия охлаждающей воды или по причине неплотности трубной системы.

В принципе, эти режимы менее напряженные, чем первый и их детальный анализ возможен при наличии более точного списка оборудования и схем систем установки. Но в обоих случаях, эти режимы практически не отличаются от режимов штатного вывода установки. И могут быть резервированы работой DHRS.

 

ПРИМЕЧАНИЕ: Еще раз необходимо напомнить о детальном разборе работы системы первого контура в аварийных режимах. Это отдельная и серьезная дискуссия, которая рано или поздно потребуется разработчикам. Элементарный анализ показывает, что как только уровень в реакторе будет потерян, разомкнется контур циркуляции и теплоотвод от АЗ будет серьезно затруднен. Если циркуляции по контуру не будет, как поведет себя АЗ? Как будет вести себя топливо и оболочка ТВЭЛов при выпаривании и неочевидно достаточной конденсации в верхней части корпуса? Насколько верно была поставлена задача для расчета такой аварийной ситуации? Все ли выполненные расчеты достоверны и верифицированны?

По моему мнению, для продолжения охлаждения АЗ и отвода остаточных тепловыделений системой DHRS, необходима организация циркуляции ТН по первому контуру, в режиме ЕЦ. Источник тепла, в виде остаточных тепловыделений, в АЗ присутствует, а это значит, что для организации циркуляции, ПГ в верхней части реактора должен охлаждаться. Иначе движения теплоносителя по контуру не добиться. На первый взгляд это аксиома, но некоторые специалисты так не считают. Конечно, можно постараться отводить избыточное тепло через стенку корпуса реактора, для этого в NuScale придумали дополнительную систему CHRS. Но этот способ имеет свои недостатки и скорее должен быть дополнительным, а не основным. Эта система эффективна для отвода очень незначительных тепловыделений, и никак не предназначена для отвода пиковых тепловыделений сразу после сброса а/з. И вероятно, должна включаться в работу в какой-то момент, лишь поддерживая работу DHRS. Ниже поговорим об этой схеме.

 

3.2.2.   Работа CHRS

Работает ли CHRS при полном обесточивании? И в какие режимы предполагается ее использование? В какой момент она подключается к работе? Оставим, на время, эти вопросы в стороне. Рассмотрим то, как работает система CHRS абстрактно, в отрыве от обоснования аварийного режима. В начале заметим, что NuScale уже изменило первоначальный дизайн этой системы, и подключения выполнены не к парогенератору, как это указано в патенте #8,170,173, а непосредственно к корпусу реактора. Это косвенно указывает на то, что расчеты не дали желаемого результата, а первично предложенная система не подтвердила свою эффективность уже на начальном  этапе проектирования.

С этого места начинается самое интересное, что требует расчетов и широких дискуссий научно-технической общественности. В итоге, после определенных манипуляций контур циркуляции CHRS размыкается и по задумке проектанта должна брать воду из зазора, между контейнментом и корпусом реактора, через 2 патрубка с двумя клапанами на каждом, обеспечивать подачу ее в опускной участок реактора, далее, происходит подогрев и кипение ТН в АЗ, пар поднимается вверх, выдавливается в контейнмент через вентиляционные клапана (2 независимые линии), создает избыточное давление в верхней части контейнмента, конденсируется на его стенках. Как мы помним, контейнмент помещен в бассейн и охлаждается через стенки. Конденсат, стекает вниз по внутренним стенкам и попадает снова в объем из которого через патрубки подается в корпус реактора. Вполне возможно, что система будет обеспечивать надежную работу, особенно в режимах отвода тепловыделений после снятия пиковых тепловыделений в первые моменты после срабатывания а/з. То есть, и судя по всему, CHRS выполняет вторичные функции и не рассматривается, в качестве приоритетного канала отвода тепла от АЗ в аварийных режимах.

 

3.2.3.    Работа первого контура 

Приступим к самому важному. К рассмотрению работы 1К в различных, уже упомянутых выше режимах. Если при аварийной ситуации 1К окажется разомкнут, как это предполагают специалисты NuScale, уже к 150… 200-й секунде после сброса а/з (см. графики отчетов), то ни о какой надежной циркуляции по контуру внутри реактора речи не идет. Несмотря на то, что пик остаточных тепловыделений снимается довольно быстро, что необходимо подтвердить расчетами, далее предстоит довольно рутинный, затяжной по времени, отвод остаточных тепловыделений. Система, или комбинация нескольких систем, по требованиям безопасности должны отработать минимум 3 суток (72 часа – время разотравления, критичная величина влияющая на запас реактивности к моменту пуска, в конце кампании). В запасе DHRS, по задумке проектантов, имеется около 15,000 м3 воды. Огромный объем, в закрытом пространстве, с обеспечением качества воды, циркуляцией, сменяемостью и вероятно с собственной системой очистки. Ведь это единственный источник запаса воды высокой чистоты на установке. Для примера, на корабельных установках  такой запас составляет примерно в 1,000 раз меньше, а на наземных установках малой мощности примерно в 100.

Насколько эффективен теплообмен в АЗ в этот период? Установится ли за это время ЕЦ по контуру DHRS если нет циркуляции по первому контуру? Это вопросы требующие ответа не только по результатам расчетов, но и по результатам размышлений и первичной экспертной оценки. В любом случае, если осуществляется проливка ПГ, а пар, затем пароводяная смесь, а затем и отепленная вода циркулируют по контуру, как минимум требуется не только канал теплоотвода, но и источник тепла, коим в данном случае является пар из АЗ. И как интенсивно будет передаваться тепло от образующегося пара в ПГ, если контур циркуляции в реакторе разомкнут?

Для резонного и надежного управления процессом расхолаживания планируется, что системы будут задействованы до тех пор, пока не установится режим стабильного теплоотвода/теплообмена. Пока ответить на все поставленные вопросы трудно, достаточно ли этого. Некоторые выводы указывают, что не достаточно. Нет более детального описания схем, нет расчетов, а представленные презентационные материалы годятся скорее для показа широкой общественности, нежели для технических дискуссий.

Если же нет циркуляции по контуру, а судя по графикам из доклада NuScale по системам безопасности, контур гарантированно размыкается через 150… 200 сек после сброса АЗ. А значит:

  • Вариант первый, без подачи воды в реактор, не обойтись. Для этого, надо сбросить давление в реакторе, открыть клапана вентиляции в верхней части корпуса. Что мгновенно повлечет за собой объемное вскипание нагретой воды. Есть риск полностью потерять контроль над теплообменом в АЗ
  • Вариант второй, предусмотреть циркуляцию на пониженном уровне ТН-1 в корпусе, что не реализовано в конструкции, а при реализации потребует серьезных доработок. И вряд-ли возможно с представленной конструкцией ПГ
  • Вариант третий, … (не представлен)

Но это пока предположения. Таким образом, по предложению специалистов NuScale, в разбираемой ситуации (похоже, что это течь 1К) отвод остаточных тепловыделений осуществляется через гильзу и стенки корпуса реактора и, в основном, за счет кипения теплоносителя в АЗ. Кипение весьма эффективный теплоотвод, бесспорно. Но если это течь, зачем открывать контур? Действительно, существует несколько мнений по процедуре локализации такой аварии. Никакими расчетами на этой стадии тут пока не поможешь.

Но все же, как в этом случае работает система отвода тепла из контейнмента? Совсем не лучший выход, это погрузить реактор в бассейн с 4-мя миллионами (!!!) галлонов воды. Понятно, что в большей степени эта система предназначена для отвода тепла при серьезных течах, потерях ТН-1 и прочих авариях, как система “последнего шанса”. А что делать со всеми остальными реакторами в составе АЭС? А как отводить тепло от самого бассейна в такой ситуации? В любом случае, это более чем сомнительное техническое решение, подверженное серьезной критике как со стороны конструктивной, так со стороны эксплуатационной.

 

Выводы: 

А теперь надо вернуться к началу обзора и посмотреть на декларируемые (например на сайте NuScale) преимущества подобного проекта. Действительно ли они существуют эти преимущества? Удастся ли их добиться в существующих условиях?

  • Повышенная безопасность 
  • Простота конструкции
  • Малые габариты 
  • Экономичность. 

Это вряд-ли…

 

 

Марка стали:

Состав (формула):

Характеристики и применение:

Сталь ЭИ914 08Х18Н10Т Аустенитная. Основная конструкционная сталь элементов внутреннего наполнения реактора
Сталь ЭИ847 08Х16Н15М3Б или Х16Н15М3Б Аустенитная. Оболочечная
Сталь ЭИ844 08Х16Н15МЗТ Аустенитная. Оболочечная (широко применяемая сегодня для корабельных АЗ и быстрых ЯР)
Сталь ЭИ645 08Х17Т Аустенитная. Оболочечная (применяемая сегодня для АЗ установок ЛА)
Сталь ЭП172 Х14Н15М2Г2*
Аустенитная. Оболочечная
Сталь ЧС68 06Х16Н15М2Г2ТФР Аустенитная. Оболочечная
Сталь ЭП450 12Х12М1БРФ Ферритно-мартенситная. Перспективная. Малораспухающая оболочечная
Сталь ЧС139 20Х12НМВБФАР Ферритно-мартенситная. Хромистая. Перспективная. Малораспухающая оболоченная
Сталь ЭК181 16Х12В2ФТаР Ферритно-мартенситная. Хромистая. Перспективная. Малораспухающая оболочечная, с быстрым спадом наведенной активности

 

Состав приблизительный, но достаточный для изучения свойств и проведения первичных расчетов в CASMO или в иной расчетной программе.

“Откуда дровишки? …”

… Характерной чертой российских АПЛ 4-го поколения должна была стать энергетическая установка (ЭУ) нового типа*. Специально для новых проектов в конце 80-х гг была разработана новая водо-водяная паропроизводящая установка (ППУ) КТП-6-85 с реактором КТП-6-185СП (иногда встречается ошибочное наименование КПМ) тепловой мощностью порядка 200 МВт с производством в ОКБ Машиностроения им. И.И.Африкантова. Отличительной особенностью нового типа реактора стало т.н. интегральное моноблочное исполнение при котором сам реактор и его первый контур охлаждения монтируются в едином корпусе. Такое решение позволяет исключить из конструкции ППУ крупные трубопроводы (их максимальный диаметр был сокращен с 675 у ОК-650, до 40 мм для присоединительных т/п у КТП-6) и, тем самым, облегчает естественную циркуляцию (ЕЦ) теплоносителя на всех режимах работы (?). Последнее является одним из ключевых критериев малошумности всей лодки исключая необходимость в постоянной работе циркуляционных насосов и сокращая на порядок энергопотребление реактора на собственные нужды (более высокий общий КПД). Подобная ППУ намного компактнее предыдущего поколения, более проста в обслуживании, более безопасна и надежна. В то же время, интеграция всех систем и узлов реактора в едином корпусе негативно сказывается на ремонтопригодности установки ввиду их низкой доступности. Потому перед разработчиками реакторов 4-го поколения была поставлена задача обеспечить их безремонтный срок службы в течение всего жизненного цикла лодки. Активная зона реактора построена так, что ее перезарядка необходима вдвое реже, чем на подобных установках лодок 3-го поколения.

 

Screen Shot 2013-02-27 at 10.11.49 PM

ПЛА пр. 885 (фото из ЖЖ Олега Кулешова, автор не установлен).

Конструктивные решения для ППУ нового поколения были опробованы на наземном исследовательском стенде КВ-2 с реактором прототипом ТМ-4/КТМ-6 в Сосновом Бору (тема “Каньон-С.1” (?) “Север”), а в 1996 году реактор был официально допущен к серийному производству. Одной из важнейших особенностей этого реактора считается новый прямоточный “прямотрубный” ПГ с двусторонним обогревом ПВ со стороны 1К. Однако на головной АПЛ 885-го проекта этот реактор так и не появился. Сложности, связанные с производством блочной паротурбинной установки для него привели к тому, что в процессе перепроектирования лодки «Северодвинск» она получила блочную ППУ ОК-650В с реактором ВМ-11 предыдущего поколения с тепловой мощностью 190 МВт, что в значительной мере сократило боевой потенциал субмарины даже не смотря на весь ряд остальных принятых на ней решений по снижению шумности главной энергетической установки. При этом, вторая лодка серии, по всей видимости, получит изначально запланированный для 885-го проекта реактор КТП-6 с соответствующим энергооборудованием.

 

КВ-2

Реакторнй отсек станда КВ-2, АЭУ ПЛА четвертого поколения (автор фото не установлен).

Известно, что в настоящий момент в ОКБМ им. И.И.Африкантова ведется разработка нового типа реактора под обозначением КТП-7И (ОКР «Феникс»). Не исключено, что он предназначен для установки на более поздних серийных лодках проекта 885М, причем, существуют два возможных принципиальных варианта для этой установки. По одной версии, речь идет о дальнейшем эволюционном развитии моноблочных реакторов с доведением срока службы активной зоны до 30 лет и более, что позволит их использование без перезарядки в течение всего жизненного цикла АПЛ. По этому пути, например, идут все зарубежные разработчики подобной техники. По другой версии, новая установка может быть основана на принципе перегрева пара непосредственно в активной зоне (разновидность т.н. «кипящего» реактора) и призвана заменить сегодняшние водо-водяные реакторы. В этом случае, если удастся решить ряд конструктивных трудностей, связанных с разработкой подобной ППУ, в частности, с обеспечением радиационной безопасности, то заказчик получит одноконтурный реактор с еще большим КПД и еще большей компактностью, по сравнению с предыдущими разработками. Однако, как предполагается, эта технология перспективна уже для 5-го поколения АПЛ.

Особенностью паротурбинной установки «Мираж» разработки Калужского Турбинного завода, которая изначально предназначалась для «Ясеня», была ее блочная компоновка с высокой степенью интеграции всех элементов. Помимо этого, она должна была обеспечивать как скоростной ход под турбозубчатыми агрегатами с понижающим редуктором и приводом на главный вал, так и «режим подкрадывания» с приводом от гребного электродвигателя, питаемого, в свою очередь от автономных турбогенераторов. ГТЗА, являющиеся, одним из основных источников шума на АПЛ, при этом, остаются отключены. Подобная гибридизация энергетической установки позволила в полной мере использовать тот факт, что реактор нового типа работает в одном режиме тепловыделения на всех режимах хода (?). Также, в значительной мере упростилась конструкция редуктора. К сожалению, финансовые проблемы завода «КТЗ» практически остановили все работы на нем в течение 90-х гг. Но в 2006 году ПТУ «Мираж» с номинальной мощностью (на гребном валу) порядка 43.000 (50,000) л.с. уже проходила стендовые испытания и, судя по всему, именно начало ее серийного производства позволит начиная со второй лодки серии в полной мере использовать потенциал, заложенный в проект 885. В отсутствие новой ПТУ, на АПЛ «Северодвинск» была использована блочная ПТУ ОК-9ВМ «Сапфир-ВМ» мощностью 43.000 л.с., ранее примененная на лодках 945-го и 971-го проектов. Обе установки обеспечивают максимальную подводную скорость около 31 уз. (надводная скорость – 16 уз.) Изменения в конфигурации оборудования энергоотсека потребовали дополнительных корректур в конструкции АПЛ «Северодвинск», таких, как перепроектировка переборок и установка рецесса в районе линии гребного вала.

 

Screen Shot 2013-03-30 at 11.22.13 AM

ПЛА пр. 955 (фото с сайта deepstorm.ru, автор не установлен).

 

Огромное внимание при проектировании лодки было уделено сокращению уровня производимых ею подводных шумов. Для этого фундаменты всех критических узлов оснащены активной системой активного гашения (САГ) шумов на основе пьезокристаллических приводов. Дискретные низкочастотные составляющие шума удалось также снизить за счет разработки новых типов негорючих спиральнотроссовых амортизаторов на замену применяемым ранее резино-кордовым. В будущем на лодках серии ожидается массовое внедрение композитных элементов конструкции, обладающих высокой прочностью, малым весом и демпфирующими свойствами. К таковым относятся различные вибропоглощающие сотовые каркасы, слоистые балки, пиллерсы, элементы трубопроводов и воздуховодов, сокращающие вибрационные шумы на отдельных частотах на 10-30 дБ.

Многообещающим является новый принцип компоновки оборудования энергетических отсеков, разработанный в СПМБМ «Малахит» по теме научно-исследовательских работ «Старомодность». В данном случае уже известный принцип т.н. зональных блоков, раскрепленных с корпусом лодки посредством амортизаторов, дополнен рамой-массой – массивным конструкционным элементом с высокой степенью инертности и высокой резонансной частотой. Этот элемент за счет своей механической инерции в состоянии гасить вибрации установленного на него оборудования энергетической установки, вспомогательного оборудования систем охлаждения и электроснабжения (также амортизированы на собственных каркасах). Весь общий каркас зонального блока дополнительно облицован вибропоглощающими панелями. Предполагается, что данный принцип в будущем поможет сократить уровни шумов лодок серии на 10-15 дБ в определенных диапазонах. В обеспечение научно-исследовательских работ по снижению физических полей на АПЛ нового поколения в 1987-1993 гг на «Адмиралтейских верфях» была построена плавучая лаборатория «Кармон-1Э» по проекту ЦКБ «Лазурит». Ее использование предполагалось на полигоне 1 ЦНИИ МО в Приморске.

Вопреки распространенному предположению, ни «Северодвинск», ни «Казань» не обладают водометным главным движителем, а оснащены семилопастным гребным винтом составной конструкции с композитным демпфированием лопастей, что позволяет на 2-3 дБ снизить общий уровень шумов от него. В качестве резервного движительного комплекса для хода на скоростях до 4,5 уз. предусмотрены электродвигатели ГАП-300 мощностью по 300 кВт в откидных колонках в кормовой и носовой частях корпуса. Они же используются в качестве подруливающих устройств. Первоначально этот тип РДК использовался на АПЛ проекта 971. Для проекта 885М в настоящий момент по теме «Ломовик» ведется разработка нового малошумного РДК с кольцевым электродвигателем. В качестве резервных дизель-генераторов предусмотрен автоматизированный АДГ-1000Б мощностью 1000 кВт на базе дизеля 8ДМ-21С производства уральского дизель-моторного завода.

 

По материалам статьи: Проект 885 и 885М «Ясень». А.Коновалов. По материалам сайта http://cale.strana.de Гамбург, ФРГ. Сентябрь 2011, доклада “Ядерная энергетика и атомный подводный флот” В.Лебедева и сообщений на научных конференциях.

 

ПРИМЕЧАНИЕ: *Официальные упоминания об этих типах реакторов и энергетических установок, удалось найти еще в нескольких местах. Практически, это первые доступные упоминания о закрытых, реализуемых проектах в малых реакторов для ВМФ России. Персонаж выпустивший информацию известный, не официальный, но откуда у автора данные? Другие, появившиеся позже упоминания, куда более официальные, включая описание ПЛА последнего поколения отрывочны но имеются в сети. 

 

(комментарии будут появляться по ходу освещения темы)

 

ОБЗОР И АНАЛИЗ НЕКОТОРЫХ ТЕХНИЧЕСКИХ РЕШЕНИЙ ПРИМЕНЕННЫХ ПРИ РАЗРАБОТКЕ АМЕРИКАНСКИХ LW SMR

 

Часть 1. О конструкции и системах безопасности малых реакторов

 

ВВЕДЕНИЕ:

Начнем с того, что основными декларируемыми преимуществами Американских малых и средних реакторов рассматриваемого типа LW SMR (разговор ниже пойдет исключительно об этом типе реакторных установок (РУ)) являются предположения разработчиков, о том, что удешевление проектов и их экономическая конкурентоспособность с прочими источниками электроэнергии будет достигнута за счет:

  • возможности использовать стандартные компоненты для активной зоны (АЗ) (кассеты стандартного типоразмера для серийного BWR (решетка из 17 x 17 стандартных ТВЭЛов, в зоне из 32 ТВС, при Hcore около 1.8 m). Надо ли обсуждать, что такой вариант компоновки не подходит для малых установок?
  • сравнительно небольших массо-габаритных показателей корпуса (прежде всего диаметр), позволяющих полностью изготовить его в заводских условиях, с соответствующим контролем качества и без затруднений транспортировать корпус РУ до места его монтажа, что вполне успешно делается и сейчас, в том числе и для «больших» реакторов
  • высокого уровня пассивной безопасности при использовании 100% ЕЦ, при нормальной эксплуатации и/или в переходных режимах, при плановом вводе/выводе, длительном расхолаживании, и особенно в аварийных ситуациях, при экстренном выводе РУ. Прогрессивные и надежные системы обеспечения безопасности
  • отсутствия или резкого снижения возможностей для возникновения LOCA, это не касается одного из проектов (HolTec) имеющего ПГ вынесенные из корпуса, где минимизация возникновения LOCA не может быть строго аргументирована
  • высокого уровня внешней безопасности и сейсмо-устойчивости. Этот постулат не совсем понятен в применении исключительно лишь к SMR. Разве подобный вариант не рассматривается и для «больших» установок? Да и преимущество это скорее относится к дизайну здания и помещений для размещения РУ и оборудования, а не к дизайну собственно реактора. Компонент «сейсмо-устойчивость», подлежит техническому анализу при рассмотрении всей конструкции и для любой АЭС.

Прочие, незначительные преимущества или недостатки вариантов дизайна здесь и сейчас не обсуждаются, так как не критичны для представленного уровня рассмотрения и не оказывают существенного влияния на концепцию создания SMR.

Конечно, кроме доступных для анализа презентаций разработчиков интересно было бы сделать аудит реальных инженерных и экономических расчетов и сравнений и обсудить данные с разработчиками. Увы, такой контакт не представляется возможным. Однако, имеющихся в доступных источниках данных вполне достаточно, чтоб проанализировать декларируемые преимущества проектов детально. То есть, можно говорить о серьезных аргументах за и против в концептуальных проектных решениях, а можно найти множество мелких недочетов, сводящих на нет любую, самую хорошую идею. Как говорится: «Дьявол кроется в мелочах».

Просмотрев на все 4 основных типа дизайна LW SMR развиваемые разными Американскими фирмами (NuScale, Westinghouse, B&W ALWR и HolTec HI-SMUR), напрашивается предварительный вывод о примерной равенстве цены постройки одного такого реакторного блока с SMR. На это наталкивают следующие данные:

  • похожие массо-габаритные размеры блока и корпусных конструкций реакторной установки (с кое-какими исключениями)
  • похожие/соизмеримые размеры АЗ и конструктивный состав, число ТВС, ТВЭЛов, тип топлива и обогащение
  • практически идентичные теплотехнические параметры контуров (I и II), а значит соизмеримые размеры турбин и соответственно размеры и дизайн турбинной части установок.

Из линейки предлагаемых несколько выпадает проект NuScale, но исключительно по генерируемой мощности. Все остальные его параметры и преимущества оцениваются и обосновываются проектантом по аргументации представленной выше.

Сегодня невозможно корректно оценить затраты на эксплуатацию малых и средних реакторов, какие бы аргументы «за» и данные расчетов не приводились. Более того, зачастую, первичный анализ некоторых технических решений явно указывают на то, что их кажущаяся, на первый взгляд их выйгрышность и целесообразность, повлечет за собой существенные расходы на обслуживание и эксплуатацию установки в дальнейшем.

 

1.   ЗАМЕЧАНИЯ О КОНСТРУКЦИИ АКТИВНЫХ ЗОН LW SMR

Собственно, по размерам АЗ реакторов типа LW SMR совсем уж малой не является и похожие по размерам АЗ, примерно 1.4…1.50 м в диаметре и при соответствующей высоте (в упомянутых проектах до 1.8 м) могут быть довольно энергонапряженными. Современные корабельные АЗ для ВВР нового поколения, к примеру имеют размеры: Dcore ~ 1.4 m и Нcore ~ 1.0 m. То есть, за исключением того, что высота рассматриваемых в проектах АЗ для SMR превышает указанную выше практически в 2 раза. По прочтении части презентаций всех разработчиков сразу возникает ряд вопросов. Поэтому, несколько замечаний относительно АЗ, следует сделать дополнительно и с самого начала:

  • проблемы неравномерностей нейтронного поля в АЗ такого размера и состава, на практике  могут решаться несколькими основными способами:

a)  постоянным регулированием нейтронного поля за счет применения СУЗ (активной работы), но тогда их будет довольно много, а размещение приводов на крышке реактора, при сравнительно небольшом диаметре корпуса, очень затруднено конструктивно. Это решаемая задача и оптимизировать количество ИМ СУЗ хоть и затруднительно, но возможно и затратно, поэтому, сразу снижаются продекларированные экономические преимущества

b)  «глубоким физическим профилированием» АЗ. Экзотика с использованием редких материалов типа Эрбия (Er) или Гадолиния (Gd) может быть весьма дорогой, тогда как борированная (изотопом B10) сталь дешева и может быть вполне приемлемым и не дорогим решением, но даже на первый взгляд, явно недостаточным для АЗ таких размеров. Это значит, что все-таки, потребуется профилирование более экзотическими и дорогими материалами. Но на этот вопрос можно ответить точно только после ознакомления с детальными расчетами и выполнении сравнительного анализа всех вариантов составов АЗ для SMR. Некоторые вопросы вызывают сложности, в основном из-за незнания Американских регулирующих документов. На такие вопросы можно будет ответить в перспективе, например:

  • Могут ли перемещаемые поглотители СУЗ выполнять совмещенные функции системы а/з и регулирования? Возможно ли это по требованиям NRC USA? Это требует дополнительного уточнения по документам NRC и возможность снижения количества ИМ СУЗ по этому показателю, в настоящем анализе не рассматривается

Другая группа вопросов относится к дизайну АЗ и РУ:

  • Можно ли задачу физического профилирования АЗ решить конструктивным возвращением к конструкции т.н. «компенсирующей решетки»? Сделать ее не просто перемещаемой по высоте, а действительно компенсирующей выгорание в разных зонах, в разные моменты кампании? Вероятно, что да, но тогда возникает проблема обеспечения достаточного уровня ЕЦ, так как проходное сечение АЗ изменится существенно
  • Как обеспечить кампанию (по загрузке) для АЗ, при условии строгих ограничений на обогащение для гражданских объектов? Если для реактора типа NuScale это меньшая проблема из-за пониженной мощности, то для реакторов превышающих мощность реактора типа NuScale в 3…5 раз, при равных размерах АЗ, это уже куда как более серьезная задача. Частые же остановки для перегрузок серьезно снижают экономические показатели эксплуатации
  • Можно улучшить габариты и конструкцию АЗ, но в рассматриваемом случае, этот фактор критичен и жестко поддерживается проектантом, так как определенные/заданные размеры АЗ, которых требуется жестко придерживаться  и их уменьшение потребует серьезной работы по созданию новой конструкции АЗ, что с т.з. ссылки на экономический параметр дешевой АЗ для проекта сразу теряет смысл
  • Кроме того, сомнительно решение, использовать традиционную для больших реакторов компоновку ТВЭЛ и ТВС еще и с точки зрения обеспечения теплотехнической надежности, поскольку таблеточное топливо в ТВЭЛах не имеет гарантированного контакта с оболочкой и возникает серьезная проблема с теплообменом, особенно в режимах ЕЦ на частичных уровнях мощности
  • Компоновка АЗ в разряженной квадратной решетке серьезно мешает обеспечению критичности в любой момент компании, а применение топлива и ТВЭЛов (конструкции которых более 35-40 лет) обычных для гражданских реакторов ставит под серьезное сомнение возможность упрощения алгоритмирования и опять же увеличивает проблемы при эксплуатации необходимостью усложнения систем управления.

Данных о расчетах экономических показателей, на этой фазе развития проектов мы практически не имеем, а слова и красивые презентации, некоторых разработчиков, предлагающие принять на веру их выводы, без предоставления серьезных доводов и аргументов подкрепленных расчетами выглядят более чем сомнительно[i].

Исходя из первых, изложенных выше критических предположений, несмотря на имеющиеся ограничения изначально заложенные в конструкции АЗ, кажется, что разработчикам необходимо продолжить исследования в области оптимизации параметров реактора и АЗ и принять радикальное решение об изменении конструкции. Рассматриваются ли реализаторами проекта пути такого «отступления»? К примеру, хотя бы на один шаг, перейти на использование стандартных типоразмеров ТВЭЛов, но с изменением дизайна ТВС? Это также неизвестно. Подобные предложения появлялись еще 10 лет назад, но реализаторы некоторых проектов, по необъясняемым ими причинам, упорно стоят на своем, хотя уже понятно, что ранее декларируемые “преимущества” стандартной компоновки “испарились” и совсем не так привлекательны как пояснялось в начале разработок. Скорее наоборот.

Таким образом, уже на первом этапе анализа, вместо вполне обоснованного использования АЗ – «таблетки», для проектируемых в США SMR, предлагается дизайн АЗ в виде вытянутого в высоту цилиндра. Далее понадобится рассмотреть расчеты искажения нейтронного потока, еще и по высоте. Их тоже придется компенсировать и серьезно. Иначе, верх АЗ практически не будет работать и выгорание в верхней части АЗ будет незначительным. Причин этому несколько:

  • Первая, нахождение в верхней части АЗ кластеров (подвесок стержней) СУЗ заглушающих реакцию «локально».
  • Вторая, низ зоны, при выгорании будет существенно раньше накапливать продукты деления и надо помнить, что при таких размерах (малых) АЗ и гражданском назначении реактора, процент негерметичных ТВЭЛ(ов) должен быть снижен радикально.

Снова появляются дополнительные вопросы к разработчикам такой конструкции АЗ и этих вопросов достаточно много, например:

  • Учитывались ли приведенные выше соображения при экономических расчетах и обоснованиях использования стандартных ТВС?
  • Предлагалось ли иное инженерное решение для профилирования «физического веса» поглощающих стержней и изменения их геометрии?
  • Учитывалось ли, что в АЗ к концу компании  будет оставаться довольно много не использованного топлива, поскольку выгорание будет очень неравномерным и при этом, нижняя часть АЗ будет работать на пределе по накоплению продуктов распада?
  • Предлагались ли иные технические решения удешевляющие использование топлива, включая повторную загрузку и частоту перезагрузки? Например «составная АЗ», из сборок разделение которых по высоте возможно и позволило бы тусовать и использовать уже отработавшие часть времени ТВС в последующих загрузках
  • Как было учтено влияние термо-гидравлики и расчета ЕЦ на нейтронно-физические характеристики АЗ проектантами? Создавались ли и использовались ли особые модели для расчетов?

На все эти вопросы ответ можно получить либо в открытой очной беседе/дискуссии, либо через специальные запросы, и то, если разработчики согласятся ответить, а не будут ссылаться на неубедительную «коммерческую тайну».

Почти все указанные выше Американские проекты, это проекты с ЕЦ. при этом, АЗ современных реакторов с ЕЦ, как правило с подкипанием (малокипящие), до 8…10% от объемного расхода для обеспечения лучшей ЕЦ, и следовательно, в АЗ и выше нее допускается некоторое наличие пара. Понятно, и очевидно, что пар этот локализован вверху АЗ. А если мы предполагаем наличие пара в АЗ и в корпусе ЯР, то сразу встает вопрос об алгоритме управления и регулировании параметров первого контура (температура на выходе из АЗ на линии насыщения при давлении в корпусе). Требуется внимательно рассмотреть и проанализировать PLT диаграмму такой установки и обоснованность применения конкретного закона регулирования:

  • При постоянной средней температуре в АЗ
  • При поддержании постоянной температуры на выходе?
  • По температуре на выходе изменяющейся по определенному закону?

На первый взгляд, конструкция АЗ и PLT, это не связанные между собой аспекты дизайна, но только на первый взгляд. На самом деле связь между конструкцией, составом АЗ, алгоритмированием и эксплуатацией самая прямая. К примеру, Твых существенно влияет на параметры пара и работу турбины, и косвенно на стоимость эксплуатации, через поддержание влажности пара и соответственно через эрозию лопаток последней ступени турбины и соответственно ремонты и обслуживание. На первый взгляд, это несущественный на этой стадии вопрос, очень серьезен, так как от его формализации зависит создание алгоритмов  управления установкой и в том числе стоимость эксплуатации, ремонтов, обслуживания.

Вполне вероятно, что в этой части рассуждений основной вопрос даже не параметры первого или второго контуров, а скорее конструкция и оптимизация количества агрегатов и узлов систем установки и последующий переход к анализу и оптимизации параметров, а также, вопрос алгоритмирования и организации эксплуатации. Тем не менее, вопросы к представляемым конструкциям LW SMR существуют и судя по представленным разработчиками данным, вряд ли они решены полностью. А значит, вряд ли они были учтены и в предлагаемых экономических обоснованиях цены одного kWe получаемого от подобной установки. На это указывает очень приближенное значение продекларированной стоимости.

 

2.      ПЕРВЫЙ КОНТУР И КОРПУС РЕАКТОРА 

Поскольку, в настоящий момент, наибольшее количество данных (презентаций) доступно именно по реактору NuScale, то с него целесообразно и начать рассмотрение этого дизайна. Дело в том, что на примере NuScale очень хорошо видны все недостатки конструкции и просчеты проектантов, частично характерные и для других проектов. Начнем с конструктивных элементов первого и второго контуров установки.

Вполне понятно, что температура перегретого пара и его параметры (давление, влажность) перед турбиной, жестко определены параметрами теплоносителя на выходе из АЗ (температура на выходе и как следствие, давление 1К). Эти параметры, как правило довольно стандартны, определяются исключительно потребностями паровой турбины и обычно жестко задаются при проектировании. Здесь появляется некоторое количество дополнительных вопросов и комментариев именно к дизайну этого, конкретного проекта:

  • Трубная система ПГ, навитая, вокруг подъемной (тяговой) шахты вполне технологична, экономична, но тогда, конструкционный вопрос, как через навивку проходят тяги периферийных ИМ СУЗ? Или же периферийные сборки АЗ все-таки не регулируются и все СУЗ локализованы лишь в центральной части АЗ? Тогда как быть с количеством ИМ СУЗ их размещением на крышке (см. выше в тексте)?
  • Еще один конструкционный вопрос, который тянет за собой целую цепочку проблем. Для перегрузки АЗ исполнен разъем поперек корпуса реактора чуть выше верхнего уровня АЗ. Как осуществляется уплотнение? Точнее, как осуществляется разъем и обратная сборка под уровнем воды в большом бассейне, по сути напротив АЗ и под биозащитой? Какими-то особыми устройствами? При том, что все эти конструкции будут иметь существенную наведенную активность (и загрязнение), то хранить их придется в отдельном бассейне и потребуется специальное условие/процедура для переноса этих конструкций в такой бассейн, или особые условия для дезактивации. А если предположить, что часть ТВЭЛов может быть повреждена при эксплуатации и эта часть может серьезно загрязнить общий бассейн? Понятно, что такое решение не удешевит операционные расходы и не улучшит экономические показатели установки/станции
  • А как удалить из АЗ поглотители при перегрузке блоком, если нижняя часть реактора не сдренирована, удалена целиком, а стержни ИМ СУЗ должны вернуться на место, в новую АЗ? Понято, что это будет отдельная операция, но как такие манипуляции отразятся на экономических показателях? Потребуется второй комплект поглотителей?
  • Каково обоснование надежности ПГ при заявленной длине трубок? Какое количество сварных швов и соединений ПГ при заявленной длине единичной трубки в десятки метров? Как рассчитывается его/их надежность всей конструкции ПГ? Предусмотрена ли полная замена ПГ или лишь глушение части трубок? Каким образом осуществляется такая замена? Кто это будет делать и какой уровень радиации в этом месте (в общем бассейне)?
  • На первый взгляд, даже если у NuScale если выходит из строя один ПГ (половина), должна меняется вся система. Как и в каком конкретном месте могут быть исполнены такие операции по замене ПГ? Ведь корпус полностью в контейнменте и условия выполнения и трудозатраты такой работы непонятны. А специфика разборки корпуса существенно затруднит такую операцию. По представленным данным получается, что в блоке всего 2 секции ПГ и в случае течи отсекается половина? То есть, на каждое действие с ПГ или на любую операцию обслуживания потребуется разборка контейнмента и выполнение работ в большим количеством демонтажа.
  • Есть ли тяговые трубы у топливных сборок АЗ? Или же, рассчитанного движущего напора и гидравлическое профилирование достаточно и без них (см. выше вопрос про нейтронно-физические процессы в АЗ и наличие паровой составляющей)?
  • Даже на первый взгляд, основная (главная) тяговая шахта не имеет каких-либо особенностей по конструкции, позволяющих обеспечивать циркуляцию через АЗ в аварийных режимах. Понятно желание проектантов снизить толщину корпуса, чтобы обеспечить надежный теплоотвод через стенку, но сразу снижаются параметры 1К и общий КПД установки не соответствует заявленному. Это легко проверяется расчетами.

Кроме того, если просмотреть презентации прочих перспективных Американских проектов LW SMR, понятно, что обязательно и отдельно надо поговорить и о “присоединениях” к корпусу реактора. Так всегда, разбираясь с одним вопросом, цепляешь какую-то мелочь и сразу вытаскиваешь наружу целый ком несоответствий. Например: почему, интегральный (моноблочный) дизайн в предложенной NuScale конструкции существенно снижает и даже исключает возможность образования течи? Кто это сказал и как он это рассчитал? Где подтверждения расчетов? Можно ли говорить о том, что в реакторе такого типа полностью исключены подключения к системам? Разве на корпусе реактора нет ни одного патрубка? Есть, и довольно много. При этом, в сравнении, количество подключений трубопроводов реактора NuScale на порядок превышает количество подключений к корабельным реакторам и примерно на 2 порядка превышает их по суммарной площади сечений подключаемых трубопроводов.

Посмотрим, какие присоединения должны быть у реально существующего или же у перспективного реактора LW SMR, и какие должны быть диаметры трубопроводов подключений (по данным разработчиков):

  • Реактор необходимо заполнять и пополнять теплоносителем. А значит, надо подать в корпус воду, и по возможности в достаточном объеме и быстро. Быстро, потому, что этот же патрубок используется для подпитки и аварийной подачи воды при образовании течи (снова вопрос к эксплуатации реактора в аварийных режимах). Такие трубопроводы, как правило подают воду в пространство над АЗ. Поскольку подача холодной воды под АЗ, может существенно поменять реактивность. Часто это патрубок «труба в трубе» системе очистки, размер Ду = 3… 4”.
  • Реактор необходимо периодически дренировать. Дренирование обычно осуществляется с дна, из нижней точки. Диаметр такой дренажной трубы, как правило, не очень большой, Ду = 1″. Но, тем не менее, такое подключение на корпусе всегда имеется.
  • Система очистки и (иногда) система длительного расхолаживания. Вода из реактора охлаждается на теплообменнике-рекуператоре и пройдя ФИО возвращается в контур. Иногда это эпизодическая операция и зависит она от состояния АЗ. Но всегда имеет место при эксплуатации. Без использования теплообменника-рекуператора, эта система может исполнять функцию системы длительного расхолаживания. Как правило, система подключена к тому же патрубку, что и система подпитки (см. выше)
  • Система подачи газа высокого или среднего давления. Аналогичный трубопровод используется для воздухоудаления, при первичном заполнении и расположен в максимально возможной верхней точке крышки/корпуса. Диаметр подключения этого трубопровода не очень большой, с Ду = примерно 1″
  • Обычно 2, как в проекте NuScale, или 4 на корабельных установках, трубопровода подачи питательной воды в ПГ. Количество зависит от количества секций парогенератора. Диаметры этих трубопроводов примерно Ду = 6…8″. И соответственно 2 (или 4) паропровода отвода перегретого пара. Эти диаметры довольно значительны и составляют примерно Ду = 10″. При том, что надежность ПГ не высока, фактор допускающий такую течь весьма важен.

Примерно таковы и стандартные подключения к корпусу любого корабельного реактора. Выше не упомянуты подключения уровнемеров, термопар, прочих датчиков, расположение их на крышке реактора. Давление в контуре обычно измеряется датчиками установленными на трубопроводах подключенных систем, до запорной (отсечной) арматуры. Остальные датчики обычно имеют собственные места подключений на специальных патрубках, в верхней части корпуса и проходят сквозь конструкйии ЯР до места выполнения замеров. Эти принципы вполне понятны и применимы для малых установок гражданского назначения.

  • Теперь несколько дополнительных слов о чисто Американской «экзотике». Правда в США, эти подключения не считаются экзотическими в силу иного подхода к аварийному расхолаживанию. Это т.н. “вентиляционные/предохранительные клапана”. Их как минимум 2, независимых, и включаются они в работу, если происходит несанкционированное повышение давления в контуре. В основном, после сброса АЗ и при активном кипении ТН-1 в отсутствие отвода тепла от АЗ реактора, или же при нарушениях работы систем управления и контроля. Диаметр таких патрубков на NuScale достаточно велик и составляет Ду = 3″.

В принципе, выше представлен практически полный перечень и для расчетов вероятности появления течей его можно использовать. Если бы не одно дополнительное но о котором поговорим ниже…

Есть особая система, для отвода тепла от реактора, через стенку контейнмента. Подобная система часто применяется на гражданских больших ЯР. Называется эта система, Containment Heat Removal System (CHRS) и ее работа будет рассмотрена ниже, во второй части анализа.

Отсечение CHRS от внутренней полости первого контура осуществляется 2-мя клапанами по каждой линии, которых также 2. Предполагается по 2 рециркуляционных патрубка на сторону, с Ду = 4″ каждый, по воде и пару. То есть, еще 4 патрубка, не считая 2-х аварийных линий с предохранительными клапанами, указанных выше.

Не правда ли достаточно большой список подключений? Можно ли, посмотрев на него полностью исключать возможность течи? Можно ли исключить вероятность образования гильотинного разрыва трубопровода довольно большого диаметра? Не уверен. Но желательно посчитать еще и вероятность течей и отказов срабатывания клапанов CHRS, интенсивность возможных течей, а также, возможность организации циркуляции в разомкнутом контуре CHRS, ну и возможность циркуляции и надежного охлаждения при отказе одной ветви системы. Это отдельная и длительная дискуссия, часть которой мы продолжим позже.


[i] Вступить в открытую дискуссию с разработчиками не представляется возможным по независящим от нас причинам. 

 

В работе разбор вот этого стейтмента (картинка временно отсутствует) о барьерах безопасности. Хотя, честно говоря, особо разбирать его особого смысла нет. Кто же спорит, что выкопать яму, упрочнить ее стены железобетоном, заполнить водой (15 млн. литров, на минуточку 15,000 м.куб), серьезное и уж очень иновационное изобретение. Похоже и здесь, главное, сколько за него заплатили, а не что нового изобрели.

Традиционно, три барьера безопасности представляются как:

  • топливная композиция и оболочка ТВЭЛа
  • корпус реактора
  • контейнмент.
Тем страннее технические решение о сбросе давления первого контура при аварии. А если произошло разрушение АЗ? Недавние события ничему не научили?
Далее, предложено считать дополнительными барьерами:
  • уже упомянутую и усиленную ж/б “яму”, наполненную водой
  • крышку над ямой
  • здание “реакторного цеха”.

Персонажи из NuScale возмутились использованными материалами и временно, по их просьбе были удалены все картинки. Придется постепенно поставить обновленные, уже собственного производства…

 

 

(For additional information: www.NuScalePower.com and presentations) 

 

If we consider the reasons/causes for which the reactor must be urgently taken out of operating (by scram cause), most of all, they should be divided into several different groups:

  1. Accidents and failures associated with the reactor’s core work/operating (rho, tau, neutronics power)
  2. Accidents and failures associated with the primary circuit operating (coolant outcoming high temperature and/or increasing primary pressure in the reactor)
  3. Accidents and failures associated with the reactor (coolant) leaks of different intensity (coolant level and internal reactor pressure decreasing)
  4. Accidents related to the turbine part (plant) faults (different reasons, technical or operatings), steam and feed-water (FW) (FW pressure and secondary steam pressure and temperature)
  5. Accidents related to equipment operating (electric power supply loss and/or failures of important machines, agregates, etc)
  6. Accidents related to crew operating errors and mistakes.

In amount, all we can consider about 12-15 signals, some of which somehow overlap. For each signal (or group), during scram and cooling process variously operated equipment, which can be used to transient mode power plant unit it to the emergency cooling regime. So, different ways and cooling, emergencies and long-term heat removal process. Let’s do some simple and pretty understandable overview:

  • The first two groups have in common is that the power plant (reactor) has no the failure of major equipment and systems, and hence shutdown and heat dissipation can be made rapidly, but in a regular (standard systems and heat removing channels).
  • The third group, which includes leaks reasons (small, medium, large, pipes break and/or LOCA), by a strange coincidence, and estimated the designers and inventors are partially not considered (?) for LW-SMR. Specially LOCA.
  • The fourth group of the accidents related to faults pumps (FW or Condensate pumps), main condenser (MC), main turbine, pipes breaking off, valves, problems with feed water supply and steam distribution.
  • The fifth group related to the blackout not only failure of major equipment (see fourth group), but also to the complete loss of control over the power plant operating and is more worst fourth variant.
  • And the sixth group, which we are not discussing here.

So, before we found out that for the safe shutdown procedures (algorithms) of the power plant (reactor) need several heat removal ways (channels). While we do not consider the circulation of primary coolant yet, which is a separate and very interesting point of discussion.

The first channel (normal heat removal process) is the way to drop the steam, steam-water mixture or water (in various regimes) from the steam-generator (SG) through the steam pipes, to the MC. In this case, starting-up feed-water pumps and condensate pumps are working normally, also. And, feed-water going through SG, after going into the MC with pre-wet steam with cold water. Then transient to steam-water mixture regime, and in the end only heating water regime. Electric power connected normally and available, all the power plant supporting systems working normally, also. Residual heat peak removal process is not difficult after this types of scrams. The reactor will be transferred to the normal cooling mode without any problem.

The second channel, if steam lines/pipes has being damaged, SG or condensate – feed-water system, and the MC and/or main cooling system. In this case we need a special backup heat removal channel. In the design variant types like NuScale DHRS (or CAREM (?) for example, etc) it is dropping steam and/or steam-water mixture from the SG to the separate and special heat exchanger (HE) submerged in the huge pool behind the containment and in the organize of a natural circulation (NC) pattern SG-HE. Except for the calculations, in theory there is probably no problem. But once there is a number of questions: What about the level of the primary circuit (again?). And containment when working constantly immersed in the pool? The second question is not so important, probably safety automatically increase if we will put reactor in the pool (sarcastic). But the first question still to be really important. Without a detailed explanation, this is still to be design problem. And US Patient 80,170,173 not actually exist in project any more? O-ops…

 

Surprise, surprise… we will talk about third way below. Lot of interesting stuff we can find about design’s conception here. The third channel of heat removal be connected up during the most heavy accidents. Organization of cooling water from the water-filled reactor’s containment, to the reactor lower plenum. Is this possible in/with open circulation loop, when the coolant evaporating through pipes with valves on top of the reactor vessel? Evaporated coolant is condensing on the cooled containment walls (which submerged into the pool), the water pour down to the containment bottom. Where, through the open “circulation” pipes with valves (same like on top) falls into dropping the reactor again to the core from bottom, going through the core, heating, partially vaporized and then through the top part of the reactor going out into containment again. Looks good. In theory yet.

 

Quite a strange scheme CHRS and in terms of engineering reliability and in terms of the heat sink from the core. In terms of equipment fault (turns out) that in addition to the pressure relief/vent steam valve (or two), there are several individually controlled valves (probably, at least 8) on large enough diameters pipes, connecting the internal volume of the reactor with containment cavity (O-ops!!!). Probably 4 on top and 4 below in lower plenum area, just right after the SG (see p. 40 also ).

This design solution is so uncertain and does not hold water, in terms of reliability, and that discussing it “into the air” with no opponents responds not possible. There’s even no LOCA not talk about the absence of which so confidently say the designers of the reactor and this kind of system (sorry, but NuScale again). Interesting to see calculations algorithm. But with opponents, it would be fun to argue. Indeed, there is no connections and target definitions, and several pipes is out, valves faults, well, come off … It happens to everyone.

Again, there is an interesting question for our heat removal from the core and the organization of the primary circulation loop. The truth, in this case, the primary coolant level in the reactor “lost”, and we can not to say exactly, what is going on with the reactor core. What are the risks, designers must also consider.

And, for this kind of design and this kind of technical solutions people can get Government grants? But we are still talk about economy of the SMR here…

 

(For additional information: www.NuScalePower.com and presentations) 

Итак, ранее мы выяснили (см. 39.1.), что для безопасного вывода установки/реактора определенного типа, необходимо несколько путей/каналов отвода тепла. Пока нами не рассматривается циркуляция теплоносителя первого контура, а это отдельный и интересный разговор.

Первый канал, это сброс пара, пароводяной смеси или воды (в разных режимах) из парогенератора через паропроводы, на главный конденсатор. В этом случае, обычно включаются в работу пусковые питательные насосы и работают конденсатные насосы, а сброс отепленной среды осуществляется на главный конденсатор с предварительным увлажнением пара холодной водой. Затем переходит в режим сброса паро-водяной смеси и в окончании, отепленной воды. Элетропитание присутствует, остальные системы работают штатно. Отвод пика остаточных тепловыделений не затруднен. Реактор переводится в режим обычного расхолаживания.

Второй канал, включается если повреждена паровая или конденсатно-питательная система, а также главный конденсатор и/или его охлаждение. В этом случае уже необходим резервный канал теплоотвода. В варианте типа NuScale (CAREM – ?) это сброс пара и/или паро-водяной смеси из парогенератора на специальные теплообменники погруженные в бассейн и организация естественной циркуляции в схеме ПГ-ТО. За исключением расчетов, теоретически тут проблем нет. Но сразу возникает несколько вопросов: А как же быть с уровнем первого контура? И контейнмент при работе постоянно погружен в бассейн? Второй вопрос не так важен. А вот первый важен. Без детального объяснения, это пока проблемка.

Третий канал. Организация циркуляции из заполненного водой контейнмента, в который погружен реактор, в опускную часть реактора. Возможно это при разомкнутом контуре, когда выпаривается теплоноситель первого контура и конденсируясь на охлаждаемых стенках контейнмента, он попадает его нижнюю часть. Откуда попадает в опуск реактора и снова в АЗ. Довольно странная схема и с точки зрения надежности и с точки зрения теплоотвода. Получается, что кроме предохранительного клапана (двух), есть еще несколько индивидуально управляемых клапанов (минимум 4…8, скорее  всего 8), достаточно большого Ду, соединяющих внутренний объем реактора с полостью контейнмента. Похоже, что 4 вверху реактора и 4 в средней части опускного участка, чуть ниже ПГ. Тут никакого LOCA не надо при отказах и несанкционированном открытии любого из этих клапанов, или же при несрабатывании в аварийной ситуации. Этот вариант настолько не выдерживает критики, с точки зрения инженерной или теплотехнический надежности, и что обсуждать его “в воздух”, без оппонентов, бессмысленно. А вот с оппонентами, было бы занятно подискутировать. И снова здесь же появляется интересный вопрос по отводу тепла от АЗ и циркуляции по первому контуру. Правда в этом случае, уровень явно будет “потерян”. Чем это чревато, конструкторам надо еще подумать.

 

(For additional information: www.NuScalePower.com and presentations) 

Virtually all of the LWR SMR designs submitted to NRC and DOE in the US demonstrate connections for fuel loading/refueling on the upper level of core’s “pan” (bottom part of reactor vessel). Can someone explain how and who/what will ensure the monitoring of the compound deep undo the bio-protection shielding. And besides, in the pool, as it is shown in a promotional video NuScale, for example. How to ensure purification water to such an extent and volume?
In the USSR, and in Russia, the lid of the reactor is connected to the vessel via a special ring and through the so-called “extended (?) studs.” Before tightening the nuts, each stud stretches hydraulic jack to provide tightening, not only with the power hydraulic tool.
What is the procedure at the reactors of “western” design? How to ensure the connection density and construction, strength of the connection if there is no human’s access to the area? Strange, but I do not believe in the complete automation of the process in the “pool”.

 

(For additional information: www.NuScalePower.com and presentations) 

 

Animation: http://www.nuscalepower.com/video_loading.php

 

 

А были ли предыдущие? В железе их не было. Но вот в чертежах, похоже, что да. Во всяком случае прорадитель у них один, ОКБМ. Да и новая корабельная установка, тоже подойдет в эту линейку сравнений.

В открытых источниках есть лишь незначительные упоминания об установках ТМ-4 или КТМ-6. Однако кое-что можно резюмировать и по этим данным. Собственно, отличия между этими двумя установками совершенно незначительны. Конструкция крышки, размещение ИМ СУЗ или незначительные изменения внутреннего дизайна. О третьей установке сведений нет совсем, за исключением упоминаний о ней, как о перспективной установке для ПЛА последнего поколения, и о том, что до постройки первого корабля с установкой 4 поколения, на эти ПЛА будут ставиться модернизированные ППУ подобные установкам типа OK-650.

С конструкцией АБВ-6М (атомная блочная водяная ???) все просто и все сложно одновременно. Отсутствие данных позволяет сделать только несколько простых выводов:

  • в отличие от предыдущих вариантов конструкции, КОД вынесен из корпуса и размещен под биозащитой, в баке МВЗ. Это техническое решение оправдано, приходило в голову и раньше, поскольку используются незаполненные объемы бака МВЗ. Снижается ли при этом возможность интенсивной ЕЦ, требует анализа. Как и “упругость контура”. Но при прочих особенностях “Русского подхода” к конструированию, можно предположить, что незначительно
  • габариты блока ППУ ограничены в представленных размерах 5 х 3.6 х 4.5 (м), при массе 200 тонн. В отличие от предыдущих конструкций значительно большей мощности, это довольно компактный блок. В сравнении с установкой РИТМ-200, это пятикратное уменьшение по объему и массе.

У меня только крепнет мысль о том, что Россия обогнала мир в конструкторских решениях касающихся реакторного “железа” и систем малых установок, лет на 15-20.

 

По материалам рекламных буклетов ОКБМ Африкантова и публикациям на сайте.

 

И что? Честно признаюсь. Точнее, не люблю бездарей и деляг с апломбом “ученых” в ее рядах. Это даже при том, что моя фотка у них на веб-сайте красуется. Да, поэтому отношусь предвзято и дотошно копаюсь в их публикациях. Не, ну чо, ну все понятно. Осваивают парни бюджет с пафосом рассказывая о собственном “величии”. И похоже, они знают мое к ним отношение. Тем более, что человек 10 оттуда я знаю персонально и едко комментирую все их “достижения”. После нескольких моих комментариев, они убрали все, за исключением последней, презентации про свой “иновационный” дизайн. Ну еще мне удалось прочитать про патент Хосе Раеза (вполне себе коммерсанта от науки, но очень толкового в автомодельности) и Джона Грума (необразованного но надежного дурака), на т/н “иновационную” систему пассивной безопасности. Жаль пока не выходит поглядеть картинки и более убедительно поязвить на эту тему. Но я позволю себе поязвить. Вот этот “патент”, U.S. Pat. No. 8,170,173, нами разбирался ажныть в 1984 году.

А вот сегодня, они меня очень повеселили. Анонсировали симулятор для атомной станции. 12 одинаковых рабочих мест для 12 модульной станции в одном помещении. Ну скажите, для чего? Я поиздевался. Поглядим, что ответят и ответят ли.

 

Аргументация “защиты” странная. Это не симуляторы блоков, а симулятор control-room. И все управляющие консоли сосредоточены в одном помещении для слаженной работы в так называемых переходных режимах. Например, при авариях типа Японской, или при отключении охлаждающей воды. Удивительно слабый аргумент. Более того, предполагается, что всего 12-ю блоками будут рулить 3 оператора. По одному на 4 реактора. Сумашествие какое-то. И все это, громко называется “концепция управления”.

 

(продолжение следует)

 

(For additional information: www.NuScalePower.com and presentations) 

 

 

Вот какая занятная штука. Практически все гражданские малые и средние реакторы разрабатываемые и презентуемые сегодня в США имеют поперечный разъем на высоте чуть выше верхней кромки АЗ. Видимо это теперешняя мода. С точки зрения “теоретического” процесса перегрузки, показываемого в презентациях, это технологично, но технологично ровно с того момента, как вы “раскрутите гайки”, на минуточку, находящиеся глубоко под биозащитой. Сразу возникает несколько вопросов:

  • кто или что будет это делать?
  • каким образом осуществляется уплотнение?
  • как туда попасть, в маленький контеймент и под биозащиту?

Ну чо, они “молодцы”.

(продолжение следует)

Здесь представлено продолжение поста 25.1, про первые “появления на широкой публике” ППУ РИТМ-200. Скудность информации не позволяет сделать полностью достоверные выводы, но кое-что, сказать можно:

  • Активная зона: Малокипящая, или с подкипанием, подразумевающая работу в режиме ЕЦ, до определенного уровня мощности. Вероятнее всего не менее 20%, как это было и ранее. Но скорее всего больше. Предполагаю, что до 40%. Соотношение высота/диаметр около 0.7 – 0.8, “таблетка”. В отличие от зон Американских вариантов SMR,  где это соотношение составляет более > 1.2…1,4. Думаю, что придумывать ничего исключительного не стали. “Глубокое физическое профилирование”, довольно большое число каналов (примерно 400) размещенных по гексогональной решетке, ТВЭЛы с описанным диаметром около 7 мм. Интересен вопрос по обогащению и выгорающему поглотителю (ВП). Скорее всего 4 – 6 суб-зон/массивов в разных комбинациях обогащения и размещенного ВП, что дает в совокупности около 10 суб-зон.
  • Принудительная циркуляция: 4 насоса, вероятнее всего все “односкоростные” (для упрощения и надежности), диагональные, одноступенчатые (разумеется). Скорее всего, принято кардинальное решение о переходе на однообмоточные погружные электродвигатели, поскольку частотное регулирование скорости уже перестало быть экзотикой. 4 насоса позволяют ступенчато регулировать расход в АЗ, примерно через 25%. Скорее всего, регулирование позволяет осуществлять довольно плавные переходы с мощности на мощность, при включении или выключении насосов.
  • Парогенератор: Тут практически нет сомнений, что это отличный парогенератор, шедевр еще Советской науки и производства Балтийского завода. Прямоточный, кассетный, примененный ранее на подобных морских ППУ (последних ОК-650 или КТМ). Наблюдаем на корпусе непонятное (?) количество патрубков подачи ПВ, отвода пара – 12. Скорее всего, просто не получается верно их подсчитать. Их должно быть либо 8, либо 16. Причем второе число так же понятно как и первое. Если первое связано с количеством секций ПГ-4 шт, то второе хоть и связано с количеством секций ПГ-8 шт, но судя по всему имеет еще и теплофизический смысл.
  • Корпус реактора, внутреннее наполнение корпуса реактора: Заметны некоторые отличия и похожести на предыдущие конструкции. Сверху вниз: традиционная крышка на шпильках, надежно, понятно, технологично. Далее, судя по свободному пространству под крышкой, СКОиД внутри реактора. А значит нет баллонов, нет множества лишних трубопроводов, нет большой группы оборудования СКОиД. Понятно утверждение и существенном улучшении массо-габаритных показателей. Но наличие “встроенного” в корпус компенсатора, подразумевает определенные алгоритмы управления. Размеры корпуса около 9 м, в сравнении с габаритами реактора NuScale меньше примерно на 3 метра.
  • Тракт циркуляции теплоносителя 1К: примечательно, что на макете корзина АЗ немного отдалена от сборок. Для уточнения, хорошо бы подсчитать “физику” АЗ с разными отражателями. Не заметно “большое количество” тепловых экранов, это нормально для современных аппаратов. Щелевой фильтр и экран “ловушка” на днище. При принудительной циркуляции, охлажденный т/н 1К к и от ЦНПК движется по патрубкам “труба в трубе”, вероятнее всего, общая гидрокамера и заслонки при остановленных насосах, для обеспечения ЕЦ. Подъемный участок, это то, что представляет отдельный интерес. Тяговые трубы похоже отсутствуют, либо немного укорочены или скрыты сознательно? Основная подъемная труба/шахта заужена меньше, чем ранее. В середине шахты расположена промежуточная плита (?), скорее всего предназначенная для обеспечения устойчивости тяг компенсирующих групп СУЗ в потоке ТН-1К.
  • Исполнительные механизмы: 9 (?) приводов. Пока не могу сказать, отказались ли от комбинации функций управления и защиты, но вполне вероятно, что да. Либо это 6+3 или 7+2 компенсирующие группы и стержни защиты, соответственно. Но вероятно, что все 9 выполняют совместные функции, с частичным погружением в АЗ при поступлении сигнала а/з. На обнаруженных в сети более ранних картинках, ИМ СУЗ показаны в количестве 6-7. В любом случае, это 2 центральные и некоторое количество периферийных.
  • МВЗ, ГВД и БОиР(ы): Судя по баку и схеме на заднем плане, 2 БОиРа и 2 ФИО (?) с т/о рекуператороами. Число баллонов газа высокого давления минимизировано до 1-2 и они также размещены под БЗ.
Пара слов про параметры и мощность: 
  • Указано, что снижен тепловой поток и чуть более меньшая мощность, 170 MWt, а это явный признак более низкого обогащения. Кампания скорее всего довольно длинная. 3-4 перезагрузки (?)  на40 лет службы реактора.
  • Определенная конструкция компенсации давления, скорее всего означает, что PLT  или “усы” со снижающейся средней температурой в АЗ, а закон управления, по температуре на выходе, в функции от мощности. 
  • Температура на выходе и входе, довольно стандартны, перепад на АЗ не около 100 градусов. Номинальное давление около 160 кг/см2. Это означает и определенные параметры турбины, вполне себе изученные и отработанные при многолетней эксплуатации. 
При наличии нескольких программ, можно “поиграть” с параметрами и выбрать похожий вариант по обогащению и кампании. Но даже сейчас можно сказать, что это, отличный аппарат, вероятнее всего, лучший в мире в классе малых реакторов среди ВВР(Д или К). Это по открытым источникам. Пример дальнейшего улучшения конструкции за счет новых технологий и улучшений. А результаты испытаний реактора ТМ-4, позволили довести конструкцию практически до совершенства. В данном направлении трудно придумать что-то лучшее. Правда я пока остаюсь последовательным сторонником ЕЦ.
Можно еще добавить личное мнение, что в части технического исполнения, представленная ППУ оставляет далеко позади подобный вариант разработки NuScale.

 

(Картинка взята из пресс-релиза ОКБМ Африкантов)