В филиале СРЗ «Нерпа» Центра судоремонта «Звёздочка» /входит в состав АО OCK/ завершена операция по выгрузке двух реакторов ОК900А с утилизируемого атомного ледокола «Сибирь». Демонтаж реакторов атомной паропроизводящей установки (АППУ) специалистами завода проводился впервые по технологии, разработанной научно-исследовательским проектно-технологическим бюро «Онега».

До начала операции был выполнен необходимый комплекс мероприятий, обеспечивающих радиационную безопасность работ. Плавкран, с помощью которого проводилась выгрузка самых крупногабаритных частей АППУ, был дооборудован мощной платформой. Биологическая защита была установлена на кабину крана, что обеспечило полную безопасность работы крановщика.
Для проведения операции было приобретено специальное оборудование для плазменной резки и изготовлена дополнительная оснастка – грузоподъемные опоры и защитные кессоны, куда выгружались реакторы.
Операция по выгрузке одного 70-ти тонного реактора заняла три часа. Защитные кессоны с реакторами были перевезены на стапельную плиту и помещены в блок-упаковку, которая после герметизации в скором времени отправится в Сайда-губу на хранение.
До конца марта все работы по демонтажу АППУ будут завершены, а чистый корпус ледокола будет передан «Атомфлоту».

Источник: zvezdochka_ru

(в работе)

Судовые ядерные энергетические установки (ЯЭУ) с жидкометаллическим теплоносителем (ЖМТ) имеют ряд неоспоримых преимуществ. Одно из важнейших, получение перегретого пара с параметрами более высокими, чем в ЯЭУ с классическими водо-водяными реакторами (ВВР).
Пионерами в создании субмарин с ЯР ЖМТ стали американцы. Правда, лодка такая у них была построена всего одна – SSN-575 Seawolf и реактор на ней установили тоже один – типа S2G. Охлаждался он жидким натрием. Лодку Seawolf, вступившую в состав ВМС в 1957-м, рассматривали в качестве опытной альтернативы первой в мире ПЛА SSN-571 Nautilus, имевшей ВВР S2W. В Пентагоне хотели определиться на ближайшее будущее, какая ЯЭУ для подводных лодок предпочтительнее.
Перспективы ЖМТ прельщали. При давлении теплоносителя в первом контуре в 20 раз меньшем, чем в ЯЭУ с ВВР, температура рабочего пара после ПГ в ЯЭУ ЖМТ оказалась в 1,8–1,9 раза выше. Однако сама ЯЭУ у американцев получилась довольно сложной. Во втором контуре между трубками парогенератора циркулировал промежуточный теплоноситель – сплав натрия и калия, нагревающий питательную воду, которая испарялась в ПГ. С натрием вышла незадача. Наблюдалась интенсивная коррозия конструкционного металла на фоне роста в последнем напряжений, которые были обусловлены значительным температурным перепадом в РУ (250 градусов). И это еще не все. В случае аварии с разрывом трубок ПГ натрий и калий вступили бы в бурную реакцию с водой, что неминуемо привело бы к тепловому взрыву. Налицо проблемы с конструкцией, с техническими решениями.
Несмотря на очевидные теплофизические преимущества реактора S2G, американские моряки в целом остались им недовольны. ЯЭУ Seawolf оказалась менее надежной, чем у Nautilus. Кроме того, большие хлопоты доставляла необходимость постоянного поддержания высокой температуры ЖМТ при нахождении лодки в базе, чтобы он не застыл и не «дал козла» (не затвердел), выведя ЯЭУ и соответственно ПЛА из строя. Поэтому американцы эксплуатировали Seawolf c S2G недолго. Уже в 1958 году лодка прошла капитальную реконструкцию. ЖМТ РУ от греха подальше заменили на более привычную и надежную с ВВР S2WA – по типу реактора, установленного на Nautilus. С ним она прослужила еще долгие годы.

Кит-рекордсмен
В нашей стране задачу применения ЖМТ ЯЭУ на атомных подводных лодках взялись решать почти одновременно с США. Это предусматривалось принятым в 1955 году постановлением Совмина СССР. Работа над ПЛА пр. 645 началась вскоре после того, как в Северодвинске была заложена первая советская атомная субмарина К-3 проекта 627 «Кит» (с ВВР). Закладка там же К-27 пр. 645 состоялась летом 1958-го, когда К-3 уже проходила ходовые испытания в Белом море. Через пять лет К-27 была принята в состав ВМФ СССР. Главными конструкторами проекта 645 были Владимир Перегудов и с 1956 года Александр Назаров (СКБ-143, ныне СПМБМ «Малахит»).
Сама по себе К-27 являлась «энергетической» модификацией первых советских АПЛ проектов 627 и 627А. Внешне от них и не отличалась. Главное новшество 645-го проекта заключалось в том, что вместо ВВР ВМ-А у «Китов» на экспериментальной по сути К-27 установили два реактора ВТ-1 с жидкометаллическим теплоносителем, в качестве которого использовался сплав свинца и висмута. Ядерная паропроизводящая установка (ЯППУ) с ВТ-1 была разработана конструкторским коллективом КБ-10 (будущее ОКБ «Гидропресс») под научным руководством академика Александра Лейпунского. Изготовили ЯППУ на Подольском машиностроительном заводе.
Официально отнесенная к опытным кораблям К-27 была полноценной боевой ПЛА. В апреле 1964-го она отправилась с Кольского полуострова в атлантический поход к экватору в подводном положении, что для нашего подплава было впервые. За 1,240 часов хода К-27 оставила за кормой 12,400 миль. Рекорд! Командир К-27 капитан 1-го ранга Иван Гуляев за успехи в освоении новой техники был удостоен звания Героя Советского Союза.
Как и американцы, советские моряки сразу столкнулись со сложностями эксплуатации. Это и необходимость постоянного (то есть и у причала, и при нахождении в доке) поддержания температуры первого контура свыше 125 градусов, и загрязнение ЖМТ радиоактивным полонием-210 (продуктом трансмутации Bi-209), и потребность в наличии на базе спецоборудования для приготовления свежего сплава свинец-висмут и приема с борта лодки такого отработанного «коктейля», причем радиоактивного. Кроме того, К-27 оказалась весьма шумной и потому более заметной, нежели ПЛА вероятного противника. Это огорчало адмиралов больше всего.
В мае 1968 года К-27, только-только прошедшая плановый ремонт, отправилась отрабатывать курсовые задачи боевой подготовки, а заодно и проверить работоспособность энергоустановки. Увы, проблемы проекта дали о себе знать и тот поход для К-27 оказался последним. Как только лодка дала полный ход, ЯР левого борта вышел из строя, часть ТВЭЛов разрушилась. Лодка всплыла и на одном реакторе вернулась в базу. К несчастью, авария имела тяжкие последствия: продукты деления проникли в обитаемые отсеки. Переоблучился экипаж, восемь моряков умерли в госпиталях, еще один задохнулся на борту в противогазе. Специалисты пришли к выводу, что наиболее вероятной причиной аварии стало загрязнение АЗ ЯР твердыми шлаками и окислами Pb и Bi. Это было учтено при создании новых лодочных ЯР с ЖМТ. Саму К-27 восстанавливать не стали, отправили на прикол. В 1982-м ее затопили северо-восточнее Новой Земли в Карском море.

Истребитель-автомат
Опыт эксплуатации К-27 оказался драматическим, но не бесполезным. Из него были сделаны выводы, положенные в основу создания новых АПЛ с ЖМТ (тоже Pb-Bi) ЯР и титановым прочным корпусом – одной предсерийной проекта 705 и шести серийных 705К (обобщенное название «Лира», по условной классификации НАТО – Alfa).
К разработке приступили в том же СКБ-143 под руководством главного конструктора Михаила Русанова. Построенная на Ново-Адмиралтейском заводе в Ленинграде К-64 была чисто опытной и прослужила недолго из-за аварии с застыванием теплоносителя. Серийные же шесть атомарин (К-123, К-316, К-373, К-432, К-463 и К-493), строившиеся как в Ленинграде, так и в Северодвинске на Севмашпредприятии и пополнившие флот в 1977–1981 годах, благодаря великолепным тактико-техническим данным доставили немало головной боли ВМС США.
Характеристики были получены благодаря тому, что однореакторная ЯППУ БМ-40А со Pb-Bi ЖМТ превосходила ЯППУ с ВВР других субмарин своего времени по эксплуатационной маневренности вдвое, по энергонасыщенности – в 1,5–2,5, а по удельно-массовым характеристикам – в 1,3–1,5 раза. Примечательно, что ПЛА проекта 705К почти не уступали в скорости (41 узел) западным противолодочным торпедам и развивали полный ход за какую-то минуту. Располагая поистине «истребительной» верткостью, «Лиры» могли атаковать противника с самых невыгодных для них секторов, даже будучи обнаруженными вражеской гидроакустикой.
И это еще не все. «Лиры» оснащались комплексными САУ энергетикой и оружием. Это позволило свести до минимума численность экипажа – она была в три раза меньше, чем у других ПЛА: 31 офицер и один мичман. Интересный момент: замполит в экипаже отсутствовал, и проведение партийно-воспитательной (именно так, а не привычной в ВС СССР партийно-политической) работы возлагалось на командира. На флоте эти лодки заслуженно прозвали «автоматами».
Правда, широкого распространения и дальнейшего развития лодки проекта 705К (они входили в состав 6-й дивизии подводных лодок Северного флота) не получили. «Лиры» прослужили до начала 90-х годов (головная К-123 – до 1996-го), с одной стороны – доказав исключительные тактические преимущества, а с другой – выявив значительные сложности в эксплуатации, связанные прежде всего с необходимостью постоянного поддержания определенного уровня физико-химических характеристик теплоносителя, ведь сплав Pb-Bi должен был находиться в жидком состоянии.
Кроме СССР (России), столь длительного опыта применения подобных реакторов на подводных лодках нет ни у кого. Монополию в подводном атомном (как, впрочем, и в надводном) кораблестроении держат ВВР.

И вот тут, в догонку видео:

Автор: Константин Чуприн, с редакторскими правками

Источник: Военно Промышленный Курьер

Будучи многолетним апологетом легководников, никогда бы не подумал, что буду выступать адвокатом ЖМР. Но пришлось недавно порассуждать о перспективах развития “малышей” и получается, что в конкретно определенных рамках альтернативы сплаву Pb-Bi нет.
Не Na, не Hg, не пресловутой и распиаренной “соли”, я кстати считаю солевую тему конкретной “панамой”, а именно нелюбимому многими тяжелому сплаву. А теперь, по прозвучавшей за разговорами просьбе/рекомендации еще и пришлось письменно оформить мнение об этом предмете.

Но вот что интересно. После всех размышлений мне показалось, что зашоренность модным моноблочным дизайном сильно мешает таким проектам. Получив же отзыв, сильно захотелось ответить анонимному “ученому соседу”. Даже не знаю…

Фото: Кристаллы Висмута

Проект подводного энергетического комплекса с ядерным реактором, который может быть использован и в оборонной сфере, готов к реализации. Об этом сообщил руководитель лаборатории Фонда перспективных исследований, главный конструктор ЦКБ МТ “Рубин” Евгений Торопов. “Для подводного энергетического комплекса мы можем создать объект с использованием реактора, отвечающего требованием МАГАТЭ (?). На сегодняшний день технических и научных проблем для создания такого комплекса нет”,- сказал Торопов, докладывая в ФПИ о ходе и предварительных результатах 2-го этапа реализации проекта “Айсберг”.

В ФПИ подчеркнули, что подводный энергетический комплекс “позволит решить проблему энергообеспечения удаленных потребителей как оборонного, так и народно-хозяйственного назначения”.

Проект ФПИ “Айсберг” реализуется с января 2015 года при головной роли АО “ЦКБ МТ “Рубин”. Проект предусматривает создание технологий и технических средств, обеспечивающих полностью автономное подводное (подледное) освоение месторождений углеводородов в арктических морях с тяжелыми ледовыми условиями. В частности, ведется разработка подводного автономного бурового комплекса, подводного автономного энергетического комплекса, подводного судна сейсморазведки, подводного транспортно-монтажного и сервисного комплекса.

В соответствии с задачами проекта, охрану подводных комплексов по добыче углеводородов и инфраструктуры месторождений планируется силами Военно-морского флота с использованием автономных средств самообороны.

Торопов рассказал, что по проекту энергетического комплекса завершены необходимые проработки, выполнено 3-D моделирование. Он отметил, что при одобрении правительством РФ и получения заявок от заинтересованных компаний воплощение проекта энергетического комплекса в жизнь может быть начато “в самое ближайшее время”.

Согласно макету энергетического комплекса, ресурс установки – 200 тыс. часов, срок службы – 30 лет, мощность – 24 МВт, период непрерывной работы без присутствия человека и технического обслуживания – 8,000 часов.

“Поддержку в дальнейшей реализации проекта оказывают Минобороны России, госкорпорация “Росатом”, ПАО “Газпром”, АО “ОСК”, которые уже сегодня учитывают в своих инновационных и долгосрочных планах реализацию создаваемых в рамках проекта “Айсберг” перспективных автономных комплексов” – заявил руководитель проектной группы ФПИ Виктор Литвиненко.

“В тесном взаимодействии с Минэкономразвития России создание пилотных образцов автономных комплексов предусматривается, в том числе, в рамках проекта государственной программы “Социально-экономическое развитие арктической зоны Российской Федерации на период до 2025 года и дальнейшую перспективу” – добавил он.

 

Источник: ИнтерФакс

Атомэнергомаш завершил одну из ключевых операций в производстве обоих реакторов реакторной установки (РУ) РИТМ-200 для головного ледокола нового поколения «Арктика», сообщает 25 мая пресс-служба Атомфлота. На площадке ПАО «ЗиО-Подольск» проведена контрольная сборка корпусов ЯР с внутрикорпусными устройствами и крышкой. Данная технологическая операция проводилась в специальном стенде чистой сборки с целью проверки стыковки важнейших элементов оборудования главной энергетической установки (ГЭУ) ледокола и определения соответствия техническим требованиям. Контрольная сборка – один из заключительных этапов в процессе изготовления реакторов перед отгрузкой заказчику, для установки в корпус ледокола.

13310472_1161459757250648_7205550606969069127_n

«Сложностью контрольной сборки являлось то, что оборудование, изготовленное на двух предприятиях, должно было состыковаться с допуском в пределах десятых долей миллиметра, а в некоторых случаях даже сотых долей. При проведении контрольной сборки мы использовали новую, современную и точную технологию с применением лазеров. Все оборудование точно встало на свои места», – сообщил начальник производства реакторного оборудования ПАО «ЗиО-Подольск» Алексей Стрюков. В настоящее время первый реактор силовой установки «РИТМ-200» готовится к отгрузке на Балтийский завод.

РУ «РИТМ-200» является главной частью АЭУ  ледокола: которая и включает в себя два Парогенерирующих Блока (ПГБ) ЯР мощностью 175 МВт каждый. АЭУ имеет высокий ресурс и коэффициент использования установленной мощности, протяженный период непрерывной работы, минимальное количество перегрузок АЗ. Также АЭУ обладает низким уровнем собственного энергопотребления, что, в конечном счете, обеспечивает лучшие эксплуатационные характеристики ледокола в целом. Предприятиями АО «Атомэнергомаш» обеспечена полная производственная цепочка создания РУ, от проектирования и производства заготовок до изготовления и отгрузки заказчику. Проектировщиком и комплектным поставщиком выступает входящее в холдинг АО «ОКБМ Африкантов».

13151734_1151370084926282_8972088171334508460_n

 

Универсальный двухосадочный атомный ледокол ЛК-60 проекта 22220 «Арктика» (см. инфографику) станет самым большим и мощным ледоколом в мире. Его длина составит 173,3 м, ширина — 34 м, осадка по конструктивной ватерлинии — 10,5 м, минимальная рабочая осадка — 8,55 м. Запланированное водоизмещение — 33,54 тыс. тонн. Ледокол сможет проводить караваны судов в арктических условиях, пробивая по ходу движения лед толщиной до 2,9 метра. Рассчетный рок службы энергетической установки нового типа составляет 40 лет.

Ниже выложено видео от РосАтома (субтитры на английском):

Инфографика ою эксплуатационных характеристиках “ЛА “арктика”:

Screen Shot 2016-07-12 at 7.51.37 AM

Пока NuScale изобретает велосипед и продает свой, морально устаревший еще до рождения, реактор “всем лишь бы кто купил”, мимо автора этого поста в ЖЖ прошла сварка первого корпуса судового реактора РИТМ-200 (см. первое фото ниже).

reaktor

Изготовление первого корпуса реактора РИТМ-200 для нового линейного атомного ледокола (ЛА). 

Но, так как ППУ ледокола имеет два реактора в своем составе, так что второй автор уже не упустил. Ниже в основном фотографии.

Screen Shot 2016-07-12 at 4.48.18 PM

Изготовление второго корпуса реактора для ледокольной РУ РИТМ-200. Обратите внимание на отсутствие шпилек крепежа крышки, что интересно.  

Водо-водяной реактор проекта ОКБМ им. Африкантова (разработчиков всех реакторов атомного флота) должен стать основой ГЭУ нового атомного ледокола пр. 22220 (см. подробный ролик).

Строящийся ЛА “Арктика”, куда встанет “РИТМ-200”. В центре виден реакторный отсек.

Это реактор интегрального/модульного типа (кассетные ПГ расположены внутри корпуса реактора См. фото). На низкообагащенном урановом топливе с обогащением до 20% и кампанией до 7 лет. Тепловая мощность реактора – 175 МВт, в составе ППУ он работает на паровую турбину ТГ мощностью 36 МВэ. Корпус первого реактора уже проходит гидроиспытания в ЗИО, чтобы затем отправится в ОКБМ на сборку внутриреакторных конструкций.

Технические данные реакторной установки РИТМ-200.

Разрез РУ (стендовый/выставочный макет).

Чуть выше горизонтального патрубка подвода теплоносителя от насоса видны кассетные парогенераторы, располагающиеся возле обечайки корпуса реактора. Они же видны на правой “отрезанной” части макета. Это решение пришло из реакторов ВМФ и для гражданских морских реакторов является рывком в плане улучшения массо-габаритных показателей и надежности систем. ППУ РИТМ-200 в составе ГЭУ с вспомогательными системами показан в более ранних постах об этом реакторе у РУ, 25.1 и 25.2.

Два таких модуля размером 6х6 метров и весом 1100 тонн (биозащита не показана) и будут составлять ГЭУ ледокола “Арктика” (рис. 5).


Сравнение РИТМ-200 с предшественником КЛТ-40, проигрывающим по сложности системы компенсации объема и давления (СКОиД), массе и габаритам.

ОКБМ в свое время порадовал вот такой фоткой СУЗов реактора РИТМ-200.

Загадка, что же такое раскладывают там эти парни в белом.

 

Источник: http://tnenergy.livejournal.com/30625.html?view=675233#t675233

Любопытный кадр из телерепортажа телеканала “НТВ” о прошедшем под председательством Президента России В.В. Путина 9 ноября 2015 года совещании по вопросам развития ОПК.

Океанская многоцелевая система “Статус-6”. Разработчик – ОАО “ЦКБ МТ “Рубин”. Назначение: “Поражение важных объектов экономики противника в районе побережья и нанесение гарантированного неприемлемого ущерба территории страны путем создания зон обширного радиоактивного заражения, непригодных для осуществления в этих зонах военной, хозяйственно-экономической и иной деятельности в течении длительного времени”

В качестве предполагаемых носителей, на фото вверху слева, изображена строящаяся ПЛА специального назначения “Белгород” проекта 09852, справа -строящаяся ПЛА специального назначения “Хабаровск” проекта 09851.

12243583_1643673905850419_4789777054942049127_n

0_b8a07_4f3711a5_orig

От редактора: В качестве комментария скажу, что в печать попало то, что строилось и испытывалось более 25 лет. Разговор, скорее всего, о необитаемой ПЛА с реактором 5-го поколения со сверх-критическими параметрами пара, испытанным не так давно. Именно об этой системе, формирующей принципиально новую доктрину использования ядерного оружия и велись разговоры более 30 лет.  Смотри ниже в блоге запись 77 (“Каньон”) и более раннюю запись 48 (“Феникс”) относительно перспективных реакторных установок и новых поколений АЭУ.

А вот и сам видеосюжет:

Источники:

http://bmpd.livejournal.com/1572614.html

http://lenta.ru/news/2015/11/11/oops/

http://foreignpolicy.com/2015/11/12/putins-doomsday-machine-nuclear-weapon-us-russia/

 

«Росатом» поставит на поток строительство ПАЭС

 

Фото: Александр Чиженок / «Коммерсантъ»

Госкорпорация «Росатом» до конца года намерена произвести испытания приемопередающего оборудования плавучей атомной тепоэлектростанции (ПАТЭС «Академик Ломоносов», а в сентябре начать обучение первых членов экипажа. Полностью объект планируют сдать до 2019 года, после чего ПАТЭС отбуксируют в порт Певек на Чукотке для замены выработавшей свой ресурс Билибинской АЭС. Успешная реализация этого проекта позволит обкатать технологию создания компактных атомных энергоблоков «конвейерной сборки» для различных целей — от выработки электричества до опреснения воды — и вдвое снизить ее стоимость. На прошлой неделе журналисты впервые побывали на ПАТЭС, которая строится на мощностях Балтийского завода в Петербурге.

Роль экскурсовода по плавучей атомной электростанции взял на себя главный строитель ПАТЭС «Академик Ломоносов» Александр Ковалев. Со всех сторон нас окружают провода и оборудование непонятного назначения, а операторы с камерами толпятся в узком коридоре, гуськом пересекая переборки между отсеками.

«Здесь у нас будет спортзал, там бассейн, дальше каюты», — показывает Ковалев. Пока трудно представить все это великолепие, лавируя между свисающих кабелей по бесконечным узким лестницам и коридорам станции. Самое большое помещение на плавучей энергоустановке — отсек для перегрузки отработанного ядерного топлива. «Если вы посмотрите налево и направо — это как раз помещения свежего топлива», — объясняет Ковалев. В помещении под нами будут расположены два ядерных реактора, а по левому и правому бортам внизу — хранилища отработанного топлива. Экипаж первой плавучей АЭС будет состоять из 78 человек, для каждого из которых предусмотрены одноместные каюты. На нижних палубах есть и двухместные — для гостей.

Заложенная еще в 2006 году ПАТЭС «Академик Ломоносов» — головной проект «Росатома» по созданию серии мобильных транспортабельных энергоблоков малой мощности. С 2009 года плавучая станция строится по заказу госкорпорации на Балтийском заводе (входит в Объединенную судостроительную корпорацию) в Санкт-Петербурге, до этого проектом занимался «Севмаш». Активная фаза стройки, по словам представителей «Росатома», ведется около трех с половиной лет: сооружение ПАТЭС на несколько лет приостанавливалось по независящим от атомщиков причинам, на фоне банкротства Межпромбанка Сергея Пугачева (Балтзавод перешел под контроль ОСК в 2011 году).

Фото: Волобуев Александр / «Лента.ру»

 

«Академик Ломоносов» — это мобильная атомная теплоэлектростанция электрической мощностью более 70 мегаватт, включающая две реакторные установки КЛТ-40С. ПАТЭС сооружается на основе серийной энергоустановки атомных ледоколов, эксплуатирующихся в Арктике, но в отличие от них не является самоходной — ее нужно буксировать по воде к пункту назначения. Там ПАТЭС подключается к береговой инфраструктуре, чтобы обеспечивать населенные пункты электроэнергией и теплом. Плавучий энергоблок предназначен для энергообеспечения портовых городов, крупных промышленных предприятий и комплексов по добыче нефти и газа на морском шельфе.

В «Росатоме» считают, что в России использование атомной энергии наиболее актуально для обеспечения теплом и энергией отдаленных районов Севера (такие районы и приравненные к ним занимают около 50 процентов территории РФ с населением 20 миллионов человек). «Единая энергетическая система России охватывает лишь 15 процентов территории страны, поэтому северные регионы находятся в зоне децентрализованного энергоснабжения, где преобладают маломощные энергетические источники на привозном органическом топливе», — отмечают в «Росатоме». Первая российская ПАТЭС как раз и рассчитана на работу в условиях Крайнего Севера и Дальнего Востока. Аналогичные установки при соответствующей «доводке» могут использоваться и в других энергодефицитных регионах — хоть в Крыму, говорит Ковалев. В конструкцию «Академика Ломоносова» глобальные изменения вноситься не будут, но последующие плавучие АЭС смогут приспособить практически к любым климатическим условиям и запросам заказчика. На международном рынке, например, наверняка будет востребовано дополнительное опреснительное оборудование.

«Академик Ломоносов» должен пришвартоваться в порту Певек на Чукотке в 2019 году и к 2021-му выйти на полную мощность, заменив Билибинскую АЭС, которую к этому сроку выведут из эксплуатации. ПАЭС рассчитана на 40 лет эксплуатации, но каждые 10-12 лет ей необходим плановый ремонт длительностью около года. Это означает, что источник электричества и тепла в порту Певек до 2030-го придется заменять второй ПАТЭС со схожими характеристиками.

 

«Станция способна обеспечить функционирование энергоизолированных регионов и потребителей в этих районах и создать им качественно иные условия жизни. ПАТЭС представляет собой абсолютно независимый энергогенерирующий блок, который можно перемещать в любую точку планеты», — рассказывает руководитель филиала «Росэнергоатома» — дирекции по сооружению ПАТЭС Сергей Завьялов. По его словам, мощность ПАТЭС «Академик Ломоносов» позволит поддерживать жизнеобеспечение населенного пункта до 100 тысяч человек. Степень готовности энергоблока плавучей АЭС он оценивает «до 70 процентов», что соответствует плановым срокам строительства. Завьялов отмечает, что на достройку ПАТЭС нужно еще полтора-два года, у строителей есть время до планового 2019-го.

На следующем этапе, рассказывает Завьялов, пройдут испытания всех приемопередающих устройств станции: «Нам необходимо обеспечить не только жесткую швартовку [судна], но и динамические перемещения, связанные с изменениями уровня моря, ледовыми и ветровыми нагрузками». Топ-менеджер «Росэнергоатома» подчеркнул, что 2015-2016 годы являются ключевыми с точки зрения сроков ввода ПАТЭС в эксплуатацию: до конца декабря планируют отработать технологии передачи электричества на берег и провести подготовку к швартовым испытаниям. Точные сроки швартовных испытаний он назвать затруднился.

Разработчики рассчитывают, что помимо российского Крайнего Севера ПАТЭС будут востребованы и за рубежом: прежде всего в островных государствах и в развивающихся странах, испытывающих нехватку энергоресурсов.

Новым мобильным источником электроэнергии интересуются китайцы. Летом 2014 года китайская CNNC New Energy и «Русатом оверсиз» (дочерняя структура «Росатома») создали рабочую группу по организации совместного предприятия для создания плавучих АЭС. Завьялов подтвердил, что переговоры о сотрудничестве России и КНР в области сооружения плавучих атомных станций идут успешно и «скорее рано, чем поздно» перейдут в практическую плоскость. По его словам, речь идет прежде всего о кооперации в судостроении, поскольку китайцы «весьма преуспели» в создании крупнотоннажных судов. «Верфи в Китае мощные, высокотехнологичные, а руководство страны поддерживает судостроителей серьезнейшим образом», — пояснил он. При этом российская сторона намерена сохранить ведущую роль в производстве атомной энергоустановки, располагая в этой области исключительными знаниями и уникальными технологиями.

 

Но чтобы ПАТЭС/ПАЭС захотели покупать третьи страны, нужно довести ПАЭС “до ума”, запустить ее, протестировать и значительно снизить стоимость, сделав ее серийной. Завьялов обращает внимание на то, что использовать новую модель ПАЭС можно не только для выработки тепла и электричества, но и для опреснения воды (по прогнозам ЮНЕСКО к 2050 году с проблемой нехватки пресной воды могут столкнуться от 2 до 7 миллиардов человек). Это может еще больше расширить рынок потенциальных заказчиков.

В дальнейшем создатели планируют оптимизировать размеры и функциональность станций: например, ограничиться только выработкой электроэнергии (это может быть сделано уже при строительстве второй ПАТЭС для чукотского порта Певек). Такой подход, считает Завьялов, позволит снизить стоимость плавучих АЭС вдвое (стоимость первой ПАТЭС составляет около 20 миллиардов рублей), а также на 40 процентов сократить сроки строительства. Плавучая станция «Академик Ломоносов» станет своеобразным полигоном для отработки технологий и взаимодействия с энергосетевыми компаниями, что позволит поставить производство ПАТЭС на поток. «В дальнейшем мы можем оптимизировать технические решения: создавать объекты в разы меньшие по водоизмещению, отказываться от ряда функций, таких как хранилище отработанного топлива, перегрузочного оборудования, жилой модуль для экипажа», — поясняет Завьялов. Это, по замыслу разработчиков, позволит создавать компактные максимально автоматизированные плавучие АЭС «конвейерной сборки» с более мощными и современными реакторными установками (РИТМ-200 и ВБР), способными выдавать от 200 до 500 мегаватт. Эскизные разработки таких плавучих станций уже есть, добавил Завьялов. Снизить стоимость можно и за счет отказа от выработки тепла — новые ПАТЭС могут вырабатывать только электричество.

Тренировки первых 17 человек, которые составят команду специалистов для «Академика Ломоносова», начнутся уже в сентябре и займут около двух лет. Для этого в Центральном институте повышения квалификации «Росатома» создана точная копия центрального пункта управления ПАТЭС, где моделируются и отрабатываются различные нештатные ситуации. Команда управления пунктом состоит из пяти человек во главе с главным инженером. У ПАТЭС будет также свой директор. Капитан же будет отвечать лишь за вопросы судовой безопасности.

 

Источник: http://lenta.ru/articles/2015/08/25/rosatom_pates/

На верфи Балтийского завода сегодня заложили атомный ледокол новой серии “Сибирь”. Головное судно этого проекта “Арктика” уже строится в Петербурге. Новому атомному ледоколу отмерян долгий срок службы и большие перспективы.

Видео можно посмотреть на сайте 100ТВ

Эти ледоколы должны стать самыми большими и мощными в мире. Исключительная энерговооруженность (реактор типа РИТМ-200) позволит им преодолевать льды толщиной до 3 метров. В результате Северный морской путь можно будет использовать почти круглый год. О коммерческом использовании самой короткой морской трассы между Европой и Азией флот мечтает уже не первое столетие.
Впрочем, главная задача перспективной ледокольной флотилии – обеспечить доставку углеводородов с месторождений Ямала и Гыдана. Именно для этого корпус корабля сделали на 4 метра шире, чем в предыдущей серии.
Стоимость проекта – примерно 84 миллиарда рублей. Головной атомоход должен выйти на испытания в 2017 году. Еще через 3 года в Арткие ждут уже всю флотилию. Уже сегодня принято решение о проектировании нового супер-ледокола класса “Лидер”. С его появлением Арктика окончательно должна стать российским регионом.
Судно с заводским номером 05707 стало вторым в новой серии ледоколов, которые идут на смену атомным ледоколам типа «Арктика» проекта 1052. От своих предшественников ледоколы проекта 22220 отличается большим водоизмещением и мощностью атомной силовой установки, а также способностью работать как на трассе Северного морского пути, так и в мелководных устьях сибирских рек за счёт изменения своей осадки. Проект ледокола разработан ОАО ЦКБ «Айсберг».

 

Технические характеристики:

  • Водоизмещение: 25540/33540 т.
  • Главные размерения: длина — 173 м, ширина — 34 м, осадка — 8.55/10.5 м.
  • Максимальная скорость хода: 22 узла
  • Мощность: 60 МВт
  • Ледопроходимость: 2.8 м.
  • Автономность: 6 месяцев
  • Экипаж: 75 человек
  • На судне имеется взлётно-посадочная площадка для приёма вертолёта.

Серия:

  • Заводской № 05706 — заложен 05.11.2013 «Арктика»
  • Заводской № 05707 — заложен 26.05.2015 «Сибирь»
  • Заводской № 05708 — подписан контракт – «Урал»

 

В этом году родоначальнику атомного ледокольного флота Советского Союза и России исполнилось 55 лет. Ледокол «Ленин» в 1959 году совершил настоящую революцию в судостроении. Этот пароход стал первым в мире надводным судном с атомно-энергетической установкой, к тому же гражданским. И первым в мире атомным ледоколом. Над его созданием трудились лучшие в стране ученые, инженеры, рабочие. Чтобы построить «Ленин» было задействовано 30 НИИ, 60 конструкторских бюро и более 200 промышленных предприятий. Руководил этой объемной работой академик А.Александров, отец первой Советской атомной подводной лодки, которая была принята на вооружение годом ранее. Ледокол сочетал в себе все последние достижения Советской научной мысли. При его сооружении была использована новая, особо прочная корпусная сталь, применены новые виды полуавтоматической и автоматической резки и сварки. Одним из оригинальных технических решений ледокола «Ленин» стала дифферентная система. Дизельные ледоколы нередко застревали во льдах, не только носом или кормой, но и бортами, чтобы избежать такой опасности, на «Ленине» были установлены специальные балластные цистерны, если льды зажимали судно, вода перекачивалась с одного борта на другой. Ледокол последовательно кренился, раздвигал и ломал лед бортами. Подобная система была на носу и на корме, то есть, при необходимости судно могло увеличивать давление на лед и по ходу движения корабля.

Атомно-энергетическая установка главная гордость «Ленина» и основа его прорыва в гражданском судостроении. Ее мощность составляла 44 тыс. л.с, и была разработана эта Игорем Африкантовым в ОКБМ, Горький (Нижний Новгород). Дизельные ледоколы могли находиться в автономном плавании не более 30–40 дней, затем кончалось горючее, и это притом, что почти треть судна загружалась топливом, у «Ленина» такой проблемы не было, его автономность ограничивалась только запасами продовольствия.

“Создание в нашей стране единственного в мире атомного ледокольного флота было предприятием чрезвычайно полезным, рентабельным и перспективным, и никакого сомнения в этом нет, – говорит вице-адмирал, академик РАН Ашот Саркисов, – “Для России это направление особенно актуально, наш атомный ледокольный флот является фактором, закрепляющим наше лидирующее положение в арктическом регионе”.

И атомоход «Ленин» подтвердил, что его возможности в арктических широтах куда больше, чем у любого другого судна на планете, за 30 лет своей эксплуатации он установил не один мировой рекорд. С началом работы атомного ледокола значительно продлилась навигация на Северном морском пути, а раньше она ограничивалась коротким летним периодом.

До 1989 года «Ленин» обеспечивал проход судов в суровых арктических условиях, сейчас
он на вечном причале в Мурманске, это музей. “Было время, ледокол «Ленин» работал,
не выходя из эксплуатации, больше года, то есть установка не глушилась, ледокол без ремонта проработал больше 13 месяцев, только экипаж менялся и пополнялось продовольствие. Такие возможности особенность для всех атомных ледоколов, ” – вспоминает
Александр Баринов, капитан атомохода «Ленин».

Первый в мире атомный ледокол «Ленин», который стал и первым отечественным судном-памятником с ядерной энергетической установкой, на месте вечной стоянки у морского вокзала города Мурманска.

Атомоходы второго поколения были основой ледокольного флота СССР. Атомоход «Ленин» не стал серийным, но опыт, полученный за годы эксплуатации, воплотился в ледоколах второго поколения. Головной корабль проекта 10 520 «Арктика» был спущен на воду в конце 1972 года. Четыре из шести ледоколов этой серии по-прежнему бороздят арктические воды и колют арктический лед. Они до сих пор составляют основу ледокольного флота России. И до сих пор, равных этим ледоколам в мире нет. У всех атомоходов этого типа одинаковые габаритные параметры: 150 метров в длину и 30 метров в ширину, они сделаны практически по одному лекалу, поэтому, побывав раз на таком корабле, не заблудишься на другом (см. Схему).

Атомоход «Ямал» – один из четырех действующих российских атомных ледоколов типа «Арктика». Моряки ласково называют его бабушкой современных ледоколов. «Ямал» за 25 лет своего существования не устарел. Это крупнейшее судно, 6 уровней надстройки над главной палубой и еще 5 этажей под ней, более 1100 помещений и сумасшедшая мощь 75 тыс. лошадиных сил на винтах. Корпус изготовлен из особо прочной стали, в месте столкновения со льдом специальный ледовый пояс 5-метровой высоты и толщиной 46 мм, по сути – броня. Толщина корпуса – 3 см усиления корпуса, мощные шпангоуты. Внутри парохода, целый город: 155 кают, большая столовая со своей хлебопекарней, библиотека, волейбольный зал и еще 2 тренажерных зала, сауны, подогреваемый бассейн с морской водой, комфорт и удобства не только для исследователей, но и для туристов: такую роль ледокол тоже выполняет вот уже более 20 лет. Отличительный признак, по которому «Ямал» не спутать ни с каким другим кораблем, – акулья пасть, символ, ставший брендом атомохода и всего Мурманска, порта приписки корабля. “Это мы нарисовали в 1993 году”, – рассказывает Андрей Смирнов, заместитель генерального директора ФГУП «Атомфлот»: “Мы старались сделать улыбку, но если не совсем хорошо получилось, то уж извините. С тех пор так и поддерживаем ее. А когда мы в этом году попытались ее закрасить, губернатор пришел и сказал: « Что вы делаете ребята?! Это уже бренд Мурманска».…”.

343020_original

 

Атомоход может развивать скорость до 22 узлов в чистой воде, но обычное движение по льдам в режиме 15 узлов. При всей своей громоздкости судно удивительно маневренное, управляется небольшим штурвалом меньше руля легковой машины. Послушно увеличивает обороты и в момент переключает ход с полного переднего на полный задний. На реверс винтов требуется всего 10–11 секунд. Атомный ледокол способен колоть лед в непрерывном режиме до 2,5 метров, а в реверсивном ему по зубам, точнее по весу, ледяной панцирь любой толщины, за исключением айсбергов и мощных торосов.

Как сегодня выглядит головной корабль новой серии атомных ледоколов? Посмотрите на представленную здесь схему.

До 2022 года планируется построить 3 ледокола уже следующего поколения, мощностью до 100 … 120 тыс. л.с. Почти все атомные ледоколы СССР и России были построены на Васильевском острове, на верфях Балтийского кораблестроительного завода. Сейчас Балтзавод выполняет новый заказ, проект 22 220, строится еще одна, новая «Арктика», только этот атомоход уже третьего поколения и, когда он сойдет со стапелей, ему снова не будет равных в мире. Ледоколы третьего поколения уникальны по многим параметрам, они двухосадочные. Это значит, что они будут способны заходить в устье рек и проводить суда на мелководных участках, например Енисея или Обской губы. Мощная опреснительная установка корабля рассчитана на подготовку 70 тонн воды ежедневно, что делает его еще более автономным. На ледоколе планируют установить специальный аппарат, пневмообмыв, что позволит сбивать лед с корпуса корабля. И это лишь некоторые усовершенствования. “Наш ледокол будет самым большим в мире”, – поясняет Сергей Калачев, главный строитель атомного ледокола «Арктика», проекта 22 220: “Его него длина 173 с лишним метра (сейчас максимальную длину 160 метров имеет ледокол «50 лет Победы»). В ледоколе будет впервые будет применена оригинальная реакторная установка нового поколения, РИТМ-200 с меньшими габаритами, что позволит разместить дополнительное оборудование в отсеке ГЭУ. На ледоколе установят два атомных реактора по 170 МВт каждый, теоретически корабль сможет находиться в автономном плавании на протяжении 7 лет, это срок, за который будет выработано загруженное в реакторе топливо. Сегодня на «Арктике», работа идет полным ходом. По плану через три года «Арктика» должна войти в порт своей приписки, Мурманск. И, как когда-то ледокол «Ленин», этот атомоход откроет новую страницу в освоении северных морских широт.

 

(По материалам “Вестника Атомпрома” №6)

Ледокол “Ленин”, давно превращенный в музей, в начале декабря вновь привлек к себе внимание. 55 лет с начала его эксплуатации отмечали как большой юбилей всего атомного ледокольного флота России и управляющей им компании “Росатомфлот”.

В потоке новостных сюжетов, поздравительных речей и неуемного восторга от былых побед советской науки и техники дошли до такой степени лакировки собственного прошлого, что не заметили, как стали говорить неправду. О том, например, что первый в мире атомный ледокол, созданный в СССР, был не просто первым в своем роде – с присущими для такого случая недоработками и проблемами, а изначально гениальным творением конструкторов, инженеров и кораблестроителей. И что благодаря этому тридцать лет работал в Арктике, не зная поломок…

Если бы так!

В разные годы, в разных местах я по крупицам восстанавливал обстоятельства засекреченной операции, которой подвергся осенью 1967 года первенец атомного ледокольного флота. Через десять лет после спуска на воду и после трех-четырех (всего-то!) арктических навигаций ядерная энергетическая установка ледокола “Ленин”, состоявшая первоначально из трех реакторов, пришла в такое удручающее состояние, что те же конструкторы, инженеры и привлеченные для консультаций ученые не придумали ничего лучше, как избавиться от нее методом “свободной выгрузки через днище”.

По воспоминаниями старшего научного сотрудника ИПТ РАН Ю.Л. Бордученко, одна из самых тяжелых аварий на атомоходе “Ленин” произошла в феврале 1965 года при подготовке ледокола к навигации. В результате ошибочных действий персонала была повреждена активная зона реактора N 2, и ее потребовалось выгрузить. А к концу навигации на том же реакторе появилась течь теплоносителя первого контура, на “неотсекаемом” участке трубопровода.

Другое обстоятельство, предопределившее судьбу атомохода-первенца и его энергетического сердца, обусловлено тем, что с момента передачи ледокола “Ленин” в эксплуатацию был накоплен немалый опыт проектирования и эксплуатации морских ЯЭУ и наземных атомных электростанций. С учетом этих обстоятельств Совет министров СССР по представлению минсредмаша, минсудпрома и ВМФ принял решение о полной замене атомной установки ОК-150 на установку типа ОК-900, технический проект которой был разработан для новых линейных ледоколов проекта 1052 (типа “Арктика”).

Демонтировать вручную, поагрегатно, подлежавшие замене узлы и механизмы, включая текущий корпус одного из реакторов, радиационно загрязненные трубопроводы и парогенераторы, означало бы переоблучить людей и растянуть ремонтно-восстановительные работы на долгий срок. Поэтому был избран другой путь…

Вес выгружаемого оборудования составил 3700 тонн, габариты – 22,5 х 13 х 12 м. Предварительные демонтажные работы на корпусе и в днище корабля продолжались с 8 по 19 сентября 1967 года. Ледокол при этом находился над местом захоронения реакторного отсека.

Документ

Из вахтенного журнала а/л “Ленин”

19 сентября 1967 года

Корабельный инженер тов. Титов осмотрел качество реза переборок. Просили передать, что качество реза переборок хорошее.

19.35. Отверстия в креновых цистернах заварены, работы проверены и приняты старшим помощником капитана.

20.00. Стоим на якоре (левом)… В воде семь смычек каната. По носу на якоре стоит п/б “Лепсе”, с которой на наш нос заведен короткий, около 25 метров, буксир. По корме на якоре находится с/с “Алтай”, с которого на нашу корму также заведен буксир. Ведутся подготовительные работы по выгрузке отсека.

20.30. В заряды установлены детонаторы, проверены цепи питания запалов. Все люди из центрального отсека вышли, начато заполнение отсека забортной водой самотеком.

(В графе замечания капитана: “22.15. Осадка ледокола 10,5 метра. Соколов”.)

21.20. В столовой команды собраны все аварийные партии на инструктаж.

21.30. Инструктаж окончен.

21.40. П/б “Лепсе”, с/c “Алтай”, л/к “Капитан Мелехов” предупреждены по УКВ о том, что с этого момента они должны держать свои машины и экипажи в постоянной готовности.

Этому моменту предшествовала ювелирная и небезопасная работа водолазных специалистов. Используя специальное оборудование, они за двое суток проделали в днище ледокола под реакторами рез с периметром 60 метров. Затем его уплотнили поролоном с брезентом, что позволило откачать воду из центрального отсека и приступить к резке переборок. Исследовавший эту работу Ю.Л. Бордученко рассказывает:

“Средняя часть силовых продольных переборок разрезалась вручную, нижняя – с помощью дистанционно управляемого устройства. Резка нижней части силовой переборки была наиболее ответственным моментом, предшествовавшим подрыву зарядов, так как отсек удерживался в корпусе верхними участками четырех переборок высотой около 2,3 м каждая, предназначенными для подрыва кумулятивными зарядами. При наличии внутренних трещин хотя бы в одной из перемычек могла быть нарушена ее прочность, и отсек массой 3700 т из-за перекоса расклинился бы в корпусе ледокола. Поэтому были установлены верхние и нижние упоры, препятствующие перекосу отсека, специальное спусковое устройство, направляющее отсек при выходе его из корпуса… На момент подрыва кумулятивных зарядов на ледоколе оставались только аварийно-спасательные партии и комиссия, руководившая выгрузкой отсека”.

Документ

Из вахтенного журнала а/л “Ленин”

19 сентября 1967 года

21.50. Аварийная тревога, всем аварийным партиям занять свои места.

22.05. Начали выбирать якорный канат.

22.10. С/с “Алтай” сообщил о постоянной готовности машин и экипажа. Якорный канат выбран до 3 смычек в воде.

22.15. Уровень воды в центральном отсеке достиг 9,0 метра. Носовой и кормовой клинкеты перекрыты, заполнение отсека забортной водой прекращено.

22.22. Капитаном объявлена 5-минутная готовность.

22.27. Произведен взрыв. Отсек ушел в воду. Аварийные партии приступили к осмотру своих постов.

22.50. Крена нет. Поступили доклады от всех аварийных партий об отсутствии повреждений окружающих центральный отсек переборок. Отбой аварийной тревоги.

23.05. Отдан буксир на п/б “Лепсе”.

23.15. Выбран левый якорь, с/с “Алтай” дал малый ход, отводит ледокол за корму от места выгрузки центрального отсека…

24.00. За ходовое время пройдено на буксире 4 кбт. Вахту сдал 2 помощнику капитана Захарову.

 

Screen Shot 2014-12-15 at 7.44.18 PM

 

Как рассказывают участники той операции, после подрыва зарядов и отделения реакторного отсека ледокол всплыл, уменьшив осадку примерно на 2-2,5 метра. Тем самым подтвердились предварительные расчеты, которые проводились в бассейне ЦНИИ им. академика А.Н. Крылова в Ленинграде на моделях в масштабе 1:50. А действие кумулятивных зарядов заблаговременно проверялось в Военно-инженерной академии им. Ф.Э. Дзержинского и в ЦНИИ металлургии и сварки на натуральных образцах стали толщиной 36 мм и на макетах в 1:5 натуральной толщины.

От Новой Земли обездвиженный ледокол со всеми предосторожностями отбуксировали в Кольский залив. 26 сентября 1967 года “Ленин” прибыл в порт, а 5 октября его поставили в док СРЗ-35 в поселке Росляково. К середине ноября днище ледокола восстановили, а еще через несколько дней завершили установку забортной арматуры – уже по новому проекту. Затем его подготовили к морскому переходу и благополучно отбуксировали через Баренцево море в Белое – на судоремонтный завод “Звездочка”, что в Северодвинске. Там он был поставлен у причальной стенки предприятия для монтажа новой реакторной установки типа ОК-900 и обслуживающих ее систем.

За два года, к апрелю 1970-го, модернизационные работы были в основном завершены. Чтобы вписать в существующий корпус новую ГЭУ (вместо прежних трех теперь было два реактора), пришлось “перекроить” 204 из 675 помещений ледокола. В ходе этих работ было установлено 6200 единиц нового оборудования, из них свыше тридцати – головные образцы. То есть такие, что устанавливались впервые. Проект модернизированного атомного ледокола “Ленин” получил номер 92М.

Как и намечалось, 22 апреля 1970 года, к 100-летнему юбилею вождя мирового пролетариата, оба реактора новой установки были выведены на мощность. У заводской стенки провели комплексные испытания установки ОК-900, а в мае того же 1970-го обновленный ледокол с пересаженным энергетическим “сердцем” отправился в море на ходовые испытания. Спустя месяц был подписан приемный акт, и 21 июня атомоход “Ленин” вновь заступил на службу в Арктике.

 

(по материалам http://www.rg.ru/2014/12/11/lenin.html)

Принципы проектирования эффективной системы охлаждения Активной Зоны (АЗ) Ядерного Реактора (ЯР) с Естественной циркуляцией (ЕЦ) и осуществление контроля за параметрами при его эксплуатации

 

Введение. Формирование проблемы:

Любые проектные работы связанные с созданием ЯР и его компонентов, в основе своей должны основываться на обеспечении технической безопасности. Особенность технической безопасности АЭУ заключается в том, что она основывается на трех составных частях:

  1. 1.    ЯБ, исключающая возникновение ядерной аварии при неконтролируемом высвобождении реактивности.
  2. 2.    РБ, обеспечивающая нормальную радиационную обстановку для работы персонала и для окружающей среды в любых условиях эксплуатации, и имеющую строгую градацию классифицирующую уровень аварийной ситуации.
  3. 3.    Теплотехническая безопасность, повторим основное ее положение: создание и обеспечение условий эксплуатации, при которых АЗ выполняла бы свои функции в течение гарантированной кампании и исключалась бы возможность попадания в т/н 1К продуктов распада (деления) из топливной матрицы поврежденных ТВЭЛ(ов), во всех режимах работы ЯР. В том числе, при авариях и в иных нештатных ситуациях. Иными словами, нарушение теплового баланса между тепловыделением и теплоотводом в АЗ и последствия такого(их) нарушения.  

Все эти условия обеспечения технической безопасности должны выполняться на всей протяженности жизненного цикла АЗ, во всех/любых режимах эксплуатации, включая:

  • нормальная работа,
  • ожидаемые/планируемые переходные режимы – маневры мощностью,
  • не ожидаемые переходные режимы вызванные, событиями/отказами
  • экстремально неожиданные события, аварии, в том числе вызванные внешними факторами (т.н. события типа 1…4)
  • операции по перегрузке топлива.

Для определения любого из перечисленных выше эксплуатационных режимов сформирована классификация по 4-м уровням условий высвобождения радиоактивности и значению т.н. Total Effective Dose Equivalent (TEDE). Но при оперативном контроле за поведением ЯР не всегда целесообразно подходить к анализу исключительно лишь с т.з. понимания уровня возможного высвобождения радиоактивности. Для оператора ЯР эта оценка скорее формальна, чем удобна.

 

(Продолжение после публикации)

 

… не определен. В файле автор обозначен фамилией и инициалами Жизневский С.Д., но с уверенностью говорить об авторстве и месте первой публикации сложно. Но по времени написания, это 2008 год. Однако, статья заслуживает внимания. Рисунки и схемы будут размещены дополнительно. Кое-какие редакторские правки по тексту были выполнены для придания статье “читабельности”.

 

Введение:

Как показывают события в мировой экономике в 2008 году, ориентация на масштабное развитие ядерной энергетики (ЯЭ) в России оказывается точным и вполне своевременным выбором. Последние события показывают правильность этого решения в долгосрочном, стратегическом контексте. Ситуация в развитии мировой экономики во второй половине 2008 года наглядно продемонстрировала, что оно может быть устойчивым только при надежном и относительно дешевом обеспечении энергией. В таком контексте масштабное развитие ЯЭ с учетом условий, сформировавшихся на энергетическом рынке к настоящему времени, оказывается практически безальтернативным вариантом.

На первый взгляд финансовый кризис, поразивший экономику планеты в 2008 году, является исключительно порождением несовершенства современной финансовой системы и не имеет причин в сфере материальной деятельности людей. Несомненно, глобальный финансовый сбой породил массу проблем, перекинулся на реальную экономику, и без устранения причин сбоя трудно рассчитывать на восстановление нормальной жизни.

При изучении перспектив развития энергетики, ее взаимосвязь с экономикой важна наряду с множеством параметров, отражающих разные стороны процесса оценки доли затрат на энергообеспечение экономической деятельности. Добывая и потребляя энергию, прилагая усилия и привлекая таланты, люди производят продукты конечного потребления и услуги, совокупная стоимость которых и составляет глобальный ВВП. Параметр, на который важно обратить внимание, – относительные затраты на обеспечение экономики энергией. Если доля затрат на энергию увеличивается, в перспективе это может привести к тому, что затраты на обеспечение энергией могут оказаться непомерными, а поведение экономической системы станет неустойчивым.

Анализ показывает, что если бы гипотетически вся современная энергетика базировалась на атомной энергии, даже с учетом большой ее инвестиционной составляющей, доля затрат на обеспечение экономики энергией не превышала бы 6% [1] глобального ВВП. Атомная энергетика – это восприимчивый к высоким технологиям, экологичный способ энергопроизводства с большой долей интеллектуальных вложений.

В условиях обостряющегося энергодефицита и роста стоимости традиционных энергоресурсов возрастает экономическая привлекательность использования в отдельных районах атомных станций малой мощности (АСММ). Во многих регионах России и мира проявляется необходимость в малых самозащищенных энергоисточниках, устойчивых к внешним воздействиям, с длительной автономностью (это понятие, в первую очередь, включает надежную и долговременную топливообеспеченность – длительную независимость от поставок топлива) для решения многих социальных и экономических проблем.

Согласно классификации МАГАТЭ [2]:

  • атомные реакторы малой мощности – реакторы, не превышающие 300 МВт (э),
  • средней – от 300 до 700 МВт (э)
  • большой – более 700 МВт (э).

Изначально, реакторы малой мощности, в основном использовались в качестве источника энергии для подводных лодок. Гражданская атомная энергетика строилась на опыте военной, и АЭС построенные в 1960-70 гг. были, как раз, средней мощности. Однако, начиная с 70-х гг., индустриально развитые страны сделали упор на строительство АЭС с мощностями от 600 – 1000 МВт. Такой путь возможен именно в индустриально и научно успешных странах, так как они имеют развитые электрические сети, квалифицированный персонал, технологии, растущий потенциал потребления энергии и средства на реализацию дорогостоящих проектов. Однако, большинство развивающихся стран не имеют достаточно развитой инфраструктуры, сети электропередач, достаточной плотности населения и средств на большие амбициозные проекты. В их случае, строить крупную электростанцию в одном месте – не лучший вариант развития энергетики на данном этапе.  Это будет еще менее эффективно, если атомная энергия используется не только для получения электричества, а, к примеру, для центрального отопления.

Необходимость внедрения АСММ понятна многим экспертам и даже политикам. Но внедрение это должно быть сделано разумно, на основе системного подхода. Только рациональное использование наличных ресурсов приведет к успешной интеграции АСММ в систему национальной энергетической безопасности. ЯЭ как качественно новая энерготехнология, основанная на использовании топлива с принципиально более высокой энергоотдачей, чем все известные органические виды топлива, должна развиваться далее по новым принципам и законам. ЯЭ должна быть организована в строгой иерархической системе с тщательной увязкой и с учетом материальных потоков в ней.

 

1.    Историческая справка:

Во всех развитых странах направление малой ЯЭ начало развиваться с начала 50-х годов прошлого века (в каких-то странах чуть позже) и, в основном было подчинено решению задач министерств обороны. В США, для решения этих задач в 1952 г. была разработана специальная армейская программа по ЯЭ. Эта программа предусматривала разработку и строительство стационарных, блочно-транспортабельных, передвижных наземных и плавучих АСММ с корпусными реакторами водо-водяного и кипящего типа, а также с реакторами, теплоносителями которых являлись газ и жидкий металл, для обеспечения электрической и тепловой энергией гарнизонов, размещенных на удаленных военных базах. В соответствии с этой программой было построено 8 экспериментальных АСММ электрической мощностью от 0,3 до 3 МВт, в том числе:

  • на Аляске (SM1A)
  • в Гренландии (PM2A)
  • в Антарктиде (PM3A).

Все указанные станции были выведены из эксплуатации в 60-е годы прошлого века. Плавучая АСММ Sturgis (MH1A), эксплуатировавшаяся в зоне Панамского канала на озере Гатун проработала с августа 1968 по июль 1976 года.

В СССР поисковые расчетно-конструкторские исследования АСММ также производились в то же самое время. Целью этих исследований являлось выявление наиболее перспективных проектов АСММ для практической реализации в виде опытных, демонстрационных и промышленных образцов. Всего было проработано около 20 вариантов АСММ электрической мощностью 1–1,5 МВт с различными реакторами (на тепловых, промежуточных и быстрых нейтронах) и разными видами исполнения (стационарные, блочно-транспортируемые, передвижные и плавучие АСММ).

В октябре 1956 г было принято правительственное решение о создании АСММ. После этого были сделаны несколько технических проектов, часть из которых была реализована:

  • В 1961 г. была введена в эксплуатацию передвижная атомная станция ТЭС3, которая проработала до 18 июля 1966 г. Эта станция электрической мощностью 1,5 МВт с ВВРом спроектирована и изготовлена в период 1957–1960 гг.
  • Затем в период 1961–1963 гг. была спроектирована и изготовлена блочно-транспортабельная станция «АРБУС». Эта станция электрической мощностью 0,75 МВт с органическим теплоносителем была выведена на проектные параметры в г.Димитровграде.
  • С 1981 г. и по настоящее время в РНЦ «Курчатовский институт» (КИ) работает опытная ядерно-энергетическая установка «Гамма» с ВВР тепловой мощностью 220 кВт и термоэлектрическими генераторами суммарной мощностью 6,6 кВт. На основе опыта эксплуатации этой установки разработан технический проект АСММ «Елена».
  • В период 1976–1985 гг. в Белоруссии были созданы две опытных мобильных установки «Памир-630Д». Особенностью этих одноконтурных установок электрической мощностью 300–600 кВт является использование в качестве теплоносителя диссоциирующего вещества «нитрин», полученного на основе четырехокиси азота (N2O4).
  • В 1974–1976 гг. были введены в эксплуатацию 4 энергоблока с канальными водографитовыми реакторами ЭГП-6 на Билибинской АЭС. При общей установленной электрической мощности энергоблоков 48 МВт отпуск тепла составляет 78 МВт и может быть максимально увеличен до 116 МВт при снижении электрической мощности до 40 МВт.

К прототипам будущих АСММ смело можно отнести и АЭУ четырех поколений, используемые на ледокольном и подводном флоте. Эти установки накопили огромный опыт эксплуатации (более 6,000 реакторо-лет) и на их основе, в России создано большинство проектов современных АСММ, предлагаемых к реализации в ближайшее время.

 

2. Потенциальные сферы использования АСММ:

2.1 Небольшие населенные пункты, без централизованного электроснабжения

Естественно, что и сегодня есть обширные территории Земного шара, с малой плотностью заселения. Сотни населенных пунктов  не подключены к централизованной электросети из-за удаленного расположения. Однако, население маленьких поселков, также нуждается в электрической и тепловой энергии. С похожей ситуацией сталкиваются жители небольших островных государств. Мощность большинства электростанций на Гавайях не превышает 20 МВт. Одним из наиболее ярких примеров может служить Индонезия – 13,300 островов. Потенциальный рынок не подключенных к общей электросети населенных пунктов очень обширен. В одной только Индии их насчитывается около 80,000. Подсчитано, что в среднем для населенного пункта в 1,000 человек требуется станция от 2 до 5 МВт, для 50,000-ого города соответственно 35-40 МВт мощности [3].

Жизневский Рис.1

 

 

 

Рисунок 1: График зависимости мощности станции от численности населения [3]:

 

 

 

 

Районы Русского Крайнего Севера и приравненных к ним удаленных территорий, а также места проживания малочисленных народов Севера расположены на территории 31 субъекта Российской Федерации, в том числе:

  • 15 краев и областей
  • 6 республик
  • 10 автономных округов.

На этих территориях проживает свыше 10 млн. человек, в т.ч. более 2,5 млн.человек составляют сельские жители. В этой зоне расположено 535 города и поселка городского типа, из которых:

  • 353 – численностью до 10 тыс.чел.
  • 91 – от 10 до 20 тыс.чел.
  • 55 – от 20 до 50 тыс.чел.
  • 17 – от 50 до 100 тыс.чел.
  • 8 – от 100 до 200 тыс.чел.
  • 11 – более 200 тыс.чел.

6,493 сельских н/пункта, в том числе:

  • с числом жителей до 10 чел. – 1606 н/пунктов,
  • от 11 до 50 чел. – 1669
  • от 52 до 100 чел. – 617
  • от 101 до 500 чел. – 1476
  • от 501 до 1000 чел. – 657
  • от 1001 до 3000 чел. – 405
  • от 3001 до 5000 чел. – 30
  • более 5000 чел. – 27 пунктов [4].

На рисунке 2, кроме России показаны регионы остальной части Земли, в которых невозможно устойчивое развитие без атомных энергоисточников малой и средней мощности.

 

Жизневский Рис.2

 

 

 

 

Рисунок 2: Регионы, нуждающиеся в энергетике малой и средней мощности [4]:

 

 

 

 

Понятно, что региональный аспект развития АСММ в смысле их энергетической ниши охватывает огромные территории Российского Ближнего и Крайнего Севера. Это районы, которые не могут быть охвачены объединенными или узловыми энергосистемами, в которых действует большое число мелких изолированных потребителей с нагрузками до 3-5 МВт (более 6,000 ДЭС общей установленной мощностью свыше 3 ГВт, вырабатывающих около 6 млрд. кВт.ч электроэнергии при удельных расходах топлива 500-600 г у.т./кВт.ч). (суммарный завоз топлива 3-3.5 млн. т у.т. в год) [7].

В этих регионах, для целей теплоснабжения здесь эксплуатируется более 5 тыс. котельных мощностью менее 10 Гкал/ч (в среднем около 1,5 Гкал/ч), не удовлетворяющих требованиям надежности и качества. И несмотря на высокие тарифы на электроэнергию в этих регионах зачастую нет альтернативы электроотоплению. Для целей теплоснабжения эксплуатируется более 5 тыс. котельных мощностью менее 10 Гкал/ч (в среднем около 1,5 Гкал/ч), не удовлетворяющих требованиям надежности и качества. И несмотря на высокие тарифы на электроэнергию в этих регионах зачастую нет альтернативы электроотоплению [7].

2.2 Энергоснабжение промышленности

Добыча полезных ископаемых – одна из наиболее важных отраслей, а в большинстве развивающихся стран пожалуй самая важная. Для добычи, последующей переработки и транспортировки полезных ископаемых требуется электроэнергия. Например, для передачи газа по газопроводу при невысоких давлениях требуется затратить 20% этого газа. Специалисты Газпрома уже обдумывали варианты использования АСММ. Во многих случаях разработка месторождения занимает в среднем 15 лет. Все это время, если предприятие находится вдали от развитой электросети, на получение энергии приходится тратить углеводородные ресурсы. В случае с  транспортабельной АСММ, можно этого избежать, ведь она может работать на одной загрузке до 20 лет.

2.3 Опреснение морской воды

Согласно данным ЮНЕСКО к 2050 году 7 миллиардов человек в 60 странах (по пессимистическим прогнозам) или 2 миллиарда человек в 48 странах (по оптимисти­ческим прогнозам) [5] столкнутся с проблемой нехватки воды. Пресная вода стре­мительно превращается в дефицитный природный ресурс. За XX столетие ее по­требление увеличилось в 7 раз, тогда как население планеты выросло всего втрое. Не случайно ООН объявила 2003 год Международным годом пресной воды. По данным ООН дефицит пресной воды в мире (включая сельскохозяйствен­ные и промышленные нужды) оценивается в 230 млрд. мЗ в год. К 2025 году дефицит пресной воды увеличится до 1,3-2,0 трлн. мЗ в год. В настоящее время основные по­требители опресненной воды сконцентрированы на Ближнем востоке (70% от общего объема), в Европе – 9,9%. США – 7,4% (в основном Калифорния и Флорида), в Африке – 6,3% и остальные 5,8% – страны Азии [5].

Хотя Россия обладает громадными запасами пресной воды и их распределение по территории является достаточно равномерным, тем не менее ситуация с водоснабжением, в некоторых регионах России, не является исключением из общей тенденции. Опреснение морской воды является одним из основных вариантов решения проблемы дефицита пресной воды.

В связи с этим, к настоящему времени в мире получили широкое распространение опреснительные установки различных типов, и практически все они (за исключением систем работающих на принципе обратного осмоса, например в Израиле) для своей работы требуют тепловую, механическую или электрическую энергию. Все эти виды энергии сегодня получают сжиганием органического топлива.

Жизневский Рис.3

 

 

 

 

Рисунок 3: Перспективные рынки опресненной морской воды [5]:

 

 

 

 

Исключением является лишь ядерно-опреснительный комплекс в г. Актау (бывш. г. Шевченко), Казахстан, где с 1973 года эксплуатировался ядерный реактор на быстрых нейтронах БН-350 и дистилляционный опреснительный комплекс мощностью 120,000 м3/сутки. РУ БН-350 выведена из эксплуатации в 1998 г и будет утилизирована, а опреснительный комплекс работает и в настоящее время, используя тепло ТЭЦ на органическом топливе.

Более чем 20-летняя эксплуатация атомного энергоопреснительного комплекса в г. Актау наглядно подтверждает надежность, безопасность и экологическую чистоту таких комплексов, отсутствие сколько-нибудь значительного отрицательного воздействия на окружающую среду.

Использование ЯЭ для опреснительных установок наиболее перспективно и имеет ряд экологических и экономических преимуществ, а идея поставки на место размещения испытанного и сданного “под ключ” в промышленно развитой зоне источника опресненной воды и электроэнергии – плавучего атомного энергоопреснительного комплекса, при минимальном объеме строительно-монтажных работ на площадке, – весьма привлекательна.

Сегодня рынок опреснения морской воды развивается стремительно. В 1995 году его объем составлял ~ 3 млрд. долларов США в год, а к 2015 году, по прогнозам МАГАТЭ достигнет 12 млрд. долларов США в год. Приблизительно 23 миллиона м3/сутки опресненной воды в настоящее время производятся 12500 станциями, сооруженными в различных частях мира [6]. Для энергоснабжения этих станций в значительной степени используют источники энергии на органическом топливе. Физически понятно, что опреснение воды является энергоемким процессом, поэтому выбор эффективного энергоисточника является одним из наиболее принципиальных вопросов экономики опреснения. В этом контексте, использование ядерных РУ в качестве энергоисточников в составе опреснительных систем может оказаться весьма перспективным.

Детальное изучение возможности и первые практические шаги в использовании ЯЭ для опреснения морской воды (ядерное опреснение) началось сравнительно недавно. Это было мотивировано рядом причин: экономической конкурентоспособностью ЯЭ в сфере производства электроэнергии, стремлением развивать в новой области энергопотребления борьбу за сохранение ограниченных ресурсов органического топлива, общемировой задачей защиты окружающей среды от выбросов парниковых газов и другими причинами. К настоящему времени, на международном уровне интерес к ядерным источникам энергии в сфере опреснения еще более возрос, и начинают намечаться перспективы перехода проблемы в практическую и коммерческую плоскость.

В связи с этим возникла необходимость изучения технической возможности и экономической целесообразности продвижения российских реакторных технологий на формирующийся международный рынок ядерного опреснения. Использование комбинированного цикла производства пресной воды и электроэнергии обеспечивает повышение капиталоотдачи и уменьшение себестоимости выработки единицы продукции. Коэффициент полезного использования ядерного топлива может достигать (55-60)% по сравнению с (30-32)%, получаемых на АЭС, вырабатывающих только электроэнергию.

Наиболее востребованный диапазон производительностей опреснительных установок – от 50,000 до 200,000 м3/сутки, приемлемая цена опресненной воды, вырабатываемой ЯЭОК – от 0,45 до 0,8 $/м3 [6]. Производительность ЯЭОК по опресненной воде более 200,000 м3/сутки вызывает проблемы распределения ее по потребителям [16].

Для энергообеспечения ЯЭОК могут применяться различные типы РУ: на тепловых или быстрых нейтронах; с различным теплоносителем/замедлителем: водо-водяные, жидкометаллические, графитовые и др. По варианту базирования установки могут быть наземными или плавучими, стационарными или передвижными. Предпочтительный вариант должен выбираться, исходя из конкретных условий расположения площадки. Однако при прочих равных условиях ЯЭОК на базе плавучих энергетических блоков (ПЭБ) по сравнению с наземным вариантом строительства комплексов такой же мощности имеют следующие основные достоинства:

  • сокращение сроков строительства и снижение капитальных затрат за счет минимальных объемов строительно-монтажных работ
  • высокое качество изготовления плавучего энергоблока в условиях судостроительного завода и сдача его под “ключ”
  • возможность размещения комплекса в любой прибрежной точке в непосредственной близости от потребителя пресной воды и электроэнергии
  • простота снятия с эксплуатации – после списания плавучий энергоблок буксируется на специализированное предприятие для утилизации
  • сокращение срока окупаемости капиталовложений.

 

Таблица 1: Перспективы мирового рынка по обессоливанию воды [6]:

Производительность в 1995 году (м3/сутки):

Прирост установленной производительности по годам (м3/сутки):

Ожидаемая производи-тельность к 2015 г  (м3/сутки):

1996-

2000

2001-

2005

2006-

2010

2011-

2015

США

183,400

322,971

302,783

483,931

773,135

2,066,220

Мексика

32,864

135,506

104,568

169,510

274,786

717,234

Антильские острова

73,481

28,198

27,991

35,696

45,523

210,889

Кипр

8,681

44,850

32,531

52,301

84,085

222,448

Италия

126,370

84,073

149,919

256,721

439,609

1,056,692

Мальта

122,117

66,716

102,265

157,648

243,025

691,771

Испания

249,315

306,769

197,321

267,338

362,201

1,382,944

Бывший СССР

136,942

64,356

60,416

78,551

102,128

442,393

Египет

30,069

27,263

40,041

68,005

115,500

280,878

Ливия

393,842

195,511

152,999

192,718

242,748

1,177,818

Бахрейн

92,717

131,556

71,017

93,505

123,114

511,909

Индия

13,415

69,817

34,803

49,355

69,992

237,382

Иран

319,397

268,716

424,297

730,408

1,257,365

3,000,183

Израиль

45,468

145,124

37,432

44,784

53,579

326,387

Кувейт

1,195,895

245,999

214,820

246,825

283,598

2,187,137

Оман

145,343

141,757

96,577

129,065

172,481

685,223

Катар

513,214

133,818

172,607

218,652

276,982

1,315,273

Саудовская Аравия

3,733,747

1,069,526

1,680,028

2,270,110

3,065,990

11,819,401

ОАЭ

1,851,166

572,314

724,402

940,932

1,222,186

5,311,000

Япония

17,898

49,489

35,671

54,553

83,430

241,041

ВСЕГО:

9,285,341

4,104,329

4,662,488

6,540,608

9,291,457

33,884,223

Выше было показано, что рынок опреснения воды экономически привлекателен и неуклонно растет. Как говорилось выше, 70% от всей обессоленной воды приходится на страны Ближнего Востока. На этом фоне нужно отметить, что, в  декабре 2006 года шесть стран-членов Совета Стран Персидского залива – Кувейт, Саудовская Аравия, Оман, Бахрейн, Объединенные Арабские Эмираты и Катар – объявили о том, что Совет начинает изучение вопроса использования ядерной энергии в мирных целях. В свою очередь, Франция заявила о своих намерениях сотрудничать с этими государствами в сфере ядерных технологий.

В феврале 2007 года шесть государств согласились сотрудничать с МАГАТЭ для анализа технического осуществления проекта по использованию ЯЭ, а также программы по опреснению воды. Саудовская Аравия возглавляет это исследование и ее власти полагают, что программа может появиться в ближайшем будущем.

Наиболее характерные требования к энергоисточнику для ЯЭОК следующие:

  • мощность реактора от 40 до 200 МВт (э)
  • стоимость АЭС от 1000 до 1700 $/кВт (э) установленной мощности
  • время создания реакторной установки от 40 до 60 месяцев
  • срок службы реакторной установки от 40 до 60 лет [16].

При одноцелевом использовании ЯЭОК для производства 200,000 м3/сутки пресной воды достаточно мощности РУ около 40 МВт.

Исходя из того, что дефицит пресной воды в настоящее время – 230 млрд. мЗ в год [5],  т.е., приблизительно, 630 млн. мЗ вдень, то можно посчитать, что для устранения нехватки пресной воды путем опреснения нужно еще примерно 126 ГВт мощностей. Безусловно, этой цифры достичь почти невозможно. Если считать, что планируемый прирост  производства пресной воды к  2015 году будет равен примерно 10 млн. мЗ в сутки, то для его покрытия требуется 2 ГВт новых мощностей, а это примерно 50 новых АСММ. Это вполне осуществимая задача.

 

(Продолжение следует)

 

Very interesting review from IAEA ARIS 2012_Status of SMR Design NENP-NPTDS being delivered to my e-mail today. But report has some uncertainties and errors. As You can see from report 32 projects has being analyzed, and 10 of presented projects from Russia. We are presenting here updated information about Russian SMR project in up-dated Table below.

 Reactor Model and Design:

 Reactors  type:

 Basic Configuration El(Th)-Power:

Safety and residual systems design. Seismic:

 Project   Status:

Notes, additional information:

KLT-40S, OKBM Afrikantov (Russia) Pressurized LWR, Blocking design, 2 1C pumps – 2 r/speed each. 20% NC possible FNPP (barge) mounted 2 units 35(150) each Passive, Naval type design. Strong seismic capability requirements over 5-6g (and above) Under construction Design based on G3 Naval Reactor. Landing prototype full scale test completed, and 3 NIB (numbers of actual reactors not included Naval)
ABV-6M, OKBM Afrikantov (Russia) Pressurized LWR, Modular, 100% NC FNPP (barge) or land based 8.6(38) x 1 or 2 modules Same Detailed design Scalable design based on G4 Naval Reactor. Landing prototype full scale test completed
RITM-200, OKBM Afrikantov (Russia) Pressurized LWR, Semi-Modular, 4 1C pumps, but 100% NC possible 50(175) for new generation of NIB Same Under manufacturing process Design based on G4 Naval Reactor. Landing prototype full scale test completed
VBER-300, OKBM Afrikantov (Russia) Pressurized LWR, Blocking design, 2 1C pumps – 2 r/speed each. 20% NC possible 325(917) Same Detailed design Scalable design based on G3 Naval Reactor. Landing prototype full scale test completed, and 3 NIB (numbers of actual reactors not included Naval)
WWER-300, SKB Gidropress (Russia) Pressurized LWR, Loop design 300(850) Passive, Naval type design. Strong seismic capability requirements over 5-6g (and above) Detailed design Design based on civilian NR WWER-440 transferred to modern materials and technology, many time in operating including few units exported
SVBR, AKME Engineering (Russia) LMCR fast reactor, Pb-Bi eutectic alloy. Modular design, 100% NC 100 Passive, Naval type design. Strong seismic capability requirements over 5-6 g (and above) Detailed design Design partially based on G2 Naval LMR. Landing prototype full scale test completed, and few NIB actual reactors was under operating in the Soviet Navy
VK-300, RDIPE (Russia) BWR 250(750) Passive Conceptual design
UNITHERM, RDIPE (Russia) PWR Modular design, 100 % NC 2.5(20) Passive, Naval type design Conceptual design  
BREST-OD-300, RDIPE (Russia) LMCR fast reactor Na 300 Passive Conceptual design
SHELF, NIKIET (Russia) PWR 6(28) Passive, Naval type design Conceptual design Partially based on VAU (Supporting Nuclear Unit) Naval design. Full scale landing prototype successfully tested

 

Несмотря ни на что. Пока только вот эти фоточки. Два реакторных блока КЛТ-40 погрузили в корпус строящейся плавучки.

Фотки взяты с сайта “РосАтома”.