(в работе)

Судовые ядерные энергетические установки (ЯЭУ) с жидкометаллическим теплоносителем (ЖМТ) имеют ряд неоспоримых преимуществ. Одно из важнейших, получение перегретого пара с параметрами более высокими, чем в ЯЭУ с классическими водо-водяными реакторами (ВВР).
Пионерами в создании субмарин с ЯР ЖМТ стали американцы. Правда, лодка такая у них была построена всего одна – SSN-575 Seawolf и реактор на ней установили тоже один – типа S2G. Охлаждался он жидким натрием. Лодку Seawolf, вступившую в состав ВМС в 1957-м, рассматривали в качестве опытной альтернативы первой в мире ПЛА SSN-571 Nautilus, имевшей ВВР S2W. В Пентагоне хотели определиться на ближайшее будущее, какая ЯЭУ для подводных лодок предпочтительнее.
Перспективы ЖМТ прельщали. При давлении теплоносителя в первом контуре в 20 раз меньшем, чем в ЯЭУ с ВВР, температура рабочего пара после ПГ в ЯЭУ ЖМТ оказалась в 1,8–1,9 раза выше. Однако сама ЯЭУ у американцев получилась довольно сложной. Во втором контуре между трубками парогенератора циркулировал промежуточный теплоноситель – сплав натрия и калия, нагревающий питательную воду, которая испарялась в ПГ. С натрием вышла незадача. Наблюдалась интенсивная коррозия конструкционного металла на фоне роста в последнем напряжений, которые были обусловлены значительным температурным перепадом в РУ (250 градусов). И это еще не все. В случае аварии с разрывом трубок ПГ натрий и калий вступили бы в бурную реакцию с водой, что неминуемо привело бы к тепловому взрыву. Налицо проблемы с конструкцией, с техническими решениями.
Несмотря на очевидные теплофизические преимущества реактора S2G, американские моряки в целом остались им недовольны. ЯЭУ Seawolf оказалась менее надежной, чем у Nautilus. Кроме того, большие хлопоты доставляла необходимость постоянного поддержания высокой температуры ЖМТ при нахождении лодки в базе, чтобы он не застыл и не «дал козла» (не затвердел), выведя ЯЭУ и соответственно ПЛА из строя. Поэтому американцы эксплуатировали Seawolf c S2G недолго. Уже в 1958 году лодка прошла капитальную реконструкцию. ЖМТ РУ от греха подальше заменили на более привычную и надежную с ВВР S2WA – по типу реактора, установленного на Nautilus. С ним она прослужила еще долгие годы.

Кит-рекордсмен
В нашей стране задачу применения ЖМТ ЯЭУ на атомных подводных лодках взялись решать почти одновременно с США. Это предусматривалось принятым в 1955 году постановлением Совмина СССР. Работа над ПЛА пр. 645 началась вскоре после того, как в Северодвинске была заложена первая советская атомная субмарина К-3 проекта 627 «Кит» (с ВВР). Закладка там же К-27 пр. 645 состоялась летом 1958-го, когда К-3 уже проходила ходовые испытания в Белом море. Через пять лет К-27 была принята в состав ВМФ СССР. Главными конструкторами проекта 645 были Владимир Перегудов и с 1956 года Александр Назаров (СКБ-143, ныне СПМБМ «Малахит»).
Сама по себе К-27 являлась «энергетической» модификацией первых советских АПЛ проектов 627 и 627А. Внешне от них и не отличалась. Главное новшество 645-го проекта заключалось в том, что вместо ВВР ВМ-А у «Китов» на экспериментальной по сути К-27 установили два реактора ВТ-1 с жидкометаллическим теплоносителем, в качестве которого использовался сплав свинца и висмута. Ядерная паропроизводящая установка (ЯППУ) с ВТ-1 была разработана конструкторским коллективом КБ-10 (будущее ОКБ «Гидропресс») под научным руководством академика Александра Лейпунского. Изготовили ЯППУ на Подольском машиностроительном заводе.
Официально отнесенная к опытным кораблям К-27 была полноценной боевой ПЛА. В апреле 1964-го она отправилась с Кольского полуострова в атлантический поход к экватору в подводном положении, что для нашего подплава было впервые. За 1,240 часов хода К-27 оставила за кормой 12,400 миль. Рекорд! Командир К-27 капитан 1-го ранга Иван Гуляев за успехи в освоении новой техники был удостоен звания Героя Советского Союза.
Как и американцы, советские моряки сразу столкнулись со сложностями эксплуатации. Это и необходимость постоянного (то есть и у причала, и при нахождении в доке) поддержания температуры первого контура свыше 125 градусов, и загрязнение ЖМТ радиоактивным полонием-210 (продуктом трансмутации Bi-209), и потребность в наличии на базе спецоборудования для приготовления свежего сплава свинец-висмут и приема с борта лодки такого отработанного «коктейля», причем радиоактивного. Кроме того, К-27 оказалась весьма шумной и потому более заметной, нежели ПЛА вероятного противника. Это огорчало адмиралов больше всего.
В мае 1968 года К-27, только-только прошедшая плановый ремонт, отправилась отрабатывать курсовые задачи боевой подготовки, а заодно и проверить работоспособность энергоустановки. Увы, проблемы проекта дали о себе знать и тот поход для К-27 оказался последним. Как только лодка дала полный ход, ЯР левого борта вышел из строя, часть ТВЭЛов разрушилась. Лодка всплыла и на одном реакторе вернулась в базу. К несчастью, авария имела тяжкие последствия: продукты деления проникли в обитаемые отсеки. Переоблучился экипаж, восемь моряков умерли в госпиталях, еще один задохнулся на борту в противогазе. Специалисты пришли к выводу, что наиболее вероятной причиной аварии стало загрязнение АЗ ЯР твердыми шлаками и окислами Pb и Bi. Это было учтено при создании новых лодочных ЯР с ЖМТ. Саму К-27 восстанавливать не стали, отправили на прикол. В 1982-м ее затопили северо-восточнее Новой Земли в Карском море.

Истребитель-автомат
Опыт эксплуатации К-27 оказался драматическим, но не бесполезным. Из него были сделаны выводы, положенные в основу создания новых АПЛ с ЖМТ (тоже Pb-Bi) ЯР и титановым прочным корпусом – одной предсерийной проекта 705 и шести серийных 705К (обобщенное название «Лира», по условной классификации НАТО – Alfa).
К разработке приступили в том же СКБ-143 под руководством главного конструктора Михаила Русанова. Построенная на Ново-Адмиралтейском заводе в Ленинграде К-64 была чисто опытной и прослужила недолго из-за аварии с застыванием теплоносителя. Серийные же шесть атомарин (К-123, К-316, К-373, К-432, К-463 и К-493), строившиеся как в Ленинграде, так и в Северодвинске на Севмашпредприятии и пополнившие флот в 1977–1981 годах, благодаря великолепным тактико-техническим данным доставили немало головной боли ВМС США.
Характеристики были получены благодаря тому, что однореакторная ЯППУ БМ-40А со Pb-Bi ЖМТ превосходила ЯППУ с ВВР других субмарин своего времени по эксплуатационной маневренности вдвое, по энергонасыщенности – в 1,5–2,5, а по удельно-массовым характеристикам – в 1,3–1,5 раза. Примечательно, что ПЛА проекта 705К почти не уступали в скорости (41 узел) западным противолодочным торпедам и развивали полный ход за какую-то минуту. Располагая поистине «истребительной» верткостью, «Лиры» могли атаковать противника с самых невыгодных для них секторов, даже будучи обнаруженными вражеской гидроакустикой.
И это еще не все. «Лиры» оснащались комплексными САУ энергетикой и оружием. Это позволило свести до минимума численность экипажа – она была в три раза меньше, чем у других ПЛА: 31 офицер и один мичман. Интересный момент: замполит в экипаже отсутствовал, и проведение партийно-воспитательной (именно так, а не привычной в ВС СССР партийно-политической) работы возлагалось на командира. На флоте эти лодки заслуженно прозвали «автоматами».
Правда, широкого распространения и дальнейшего развития лодки проекта 705К (они входили в состав 6-й дивизии подводных лодок Северного флота) не получили. «Лиры» прослужили до начала 90-х годов (головная К-123 – до 1996-го), с одной стороны – доказав исключительные тактические преимущества, а с другой – выявив значительные сложности в эксплуатации, связанные прежде всего с необходимостью постоянного поддержания определенного уровня физико-химических характеристик теплоносителя, ведь сплав Pb-Bi должен был находиться в жидком состоянии.
Кроме СССР (России), столь длительного опыта применения подобных реакторов на подводных лодках нет ни у кого. Монополию в подводном атомном (как, впрочем, и в надводном) кораблестроении держат ВВР.

И вот тут, в догонку видео:

Автор: Константин Чуприн, с редакторскими правками

Источник: Военно Промышленный Курьер

(В работе)

Как пишет газета «Коммерсантъ» в материале Анастасии Веденеевой, Германа Костринского, Ивана Сафронова и Юрия Барсукова «Ледоколов много не бывает. «Атомфлот» может получить еще два ЛК-60», Балтийский завод Объединенной судостроительной корпорации (ОСК) может получить заказ еще на два атомных ледокола ЛК-60 для «Атомфлота» в дополнение к уже строящимся трем судам. Эту возможность, по данным “Ъ”, изучают в правительстве, Совете безопасности и других структурах. Источники “Ъ” называют среди причин роста потребности в ледоколах сложности с прогнозированием логистики по Севморпути и интереса Китая к СПГ из Арктики.

Достраивающиеся на плаву два первых универсальных атомных ледокола проекта 22220 (ЛК-60Я) “Арктика” (слева) и “Сибирь” (справа) у достроечной набережной ООО “Балтийский завод – судостроение”. В центре видна достраивающаяся плавучая атомная теплоэлектростанция “Академик Михаил Ломоносов” проекта 20870. Санкт-Петербург, 30.10.2017 (с) И.В. Бородулин / fleetphoto.ru

О том, что входящий в «Росатом» «Атомфлот» может построить еще два универсальных атомных ледокола (УАЛ, серия 22220) ЛК-60 во входящем в ОСК ООО «Балтийский завод — Судостроение», рассказали “Ъ” ряд источников в отрасли. На форуме «Арктика: настоящее и будущее» 5 декабря это подтвердил глава «Атомфлота» Вячеслав Рукша. По его словам, западный маршрут Севморпути отработан, «потребуется просто увеличение ледоколов». «Арктик СПГ-2» (второй СПГ-проект НОВАТЭКа после запущенного вчера «Ямал СПГ») точно ставит вопрос строительства четвертого и пятого ЛК-60, пояснил господин Рукша. Сейчас Балтзавод строит три УАЛ — «Арктика», «Сибирь» и «Урал» — общей стоимостью 121,4 млрд руб. При этом топ-менеджер уточнил, что перевалку 20 млн тонн СПГ в Петропавловске-Камчатском и круглогодичное использование восточного маршрута по СМП решить без двух-трех сверхмощных ледоколов класса «Лидер» на 120 МВт (в зависимости от грузопотока) «не представляется возможным». От дополнительных пояснений он воздержался, в «Росатоме» комментариев не дали.

Президент ОСК Алексей Рахманов подтвердил “Ъ”: вопрос строительства четвертого и пятого ЛК-60 на Балтзаводе обсуждается, но «сказать, что контрактация уже идет, сегодня нельзя». «Идея в том, что ЛК-60 хороши, но для более эффективной проводки караванов судов с большим водоизмещением они должны быть немного в иной конфигурации,— добавил топ-менеджер.— Они будут отличаться от первых трех».

Как рассказал “Ъ” гендиректор — главный конструктор ЦКБ «Айсберг» (проектант ЛК-60) Александр Рыжков, в Крыловском ГНЦ уже прошли испытания моделей четвертого и пятого ледоколов проекта 22220. Новые ледоколы будут на 5 м шире, что обеспечит более высокую скорость проводки танкеров. «Сегодня при толщине льда 1,5 м газовоз типа “Кристофа де Маржери” сможет идти за ЛК-60 со скоростью 4,5–5 узлов,— пояснил он.— Увеличение габаритов позволит идти со скоростью шесть узлов».

Как рассказал “Ъ” высокопоставленный источник в судостроительной отрасли, вопрос о строительстве еще двух ЛК-60 сейчас изучают профильные госструктуры, в частности Совет безопасности, коллегия Военно-промышленной комиссии при правительстве и Минпромторг. По его словам, последние расчеты показали, что для бесперебойного сообщения по СМП требуется пять ЛК-60 и три «Лидера». «Такая конфигурация позволит создать задел в случае роста грузооборота, который будет расти, в частности, из-за увеличения объемов вывозимого СПГ в рамках “Ямал СПГ”»,— говорит собеседник “Ъ”. В НОВАТЭКе заявили “Ъ”, что это «вопрос правительства». Другой источник “Ъ” в отрасли утверждает, что за размещение дополнительного заказа выступает ОСК: пара ЛК-60 при условии своевременного финансирования позволит загрузить Балтзавод до 2025–2026 годов.

Как говорит источник “Ъ”, знакомый с ситуацией, понимание необходимости еще в двух ЛК-60 возникло после визита Дмитрия Медведева в Китай, поскольку КНР заинтересована в «Арктик СПГ-2». Они требуются даже для круглогодичного западного маршрута, отмечает собеседник “Ъ”, а после их появления уже можно было бы окончательно определиться с необходимостью круглогодичной навигации по восточному маршруту, то есть со строительством «Лидеров». Для Восточно-Сибирского моря базовые газовозы должны быть класса Yamalmax дедвейтом почти 90 тыс. тонн, шириной 50 м и длиной 300 м, говорит источник “Ъ”, для их проводки даже на морском канале в Обской губе необходимы ледоколы, корпус которых шире, чем сейчас у УАЛ. Такое решение не должно стать для конструкторов серьезным изменением, заключает он.

Тем не менее сейчас никто из собеседников “Ъ” не говорит о том, где найти источник средств на новые ЛК-60. Возможности бюджета, видимо, исчерпаны, и ранее это стало одной из причин торможения с решением по «Лидерам» (во вторник вице-премьер Дмитрий Рогозин говорил о возможности ГЧП для этого проекта).

Член научного совета при СБ РФ, глава консультационного центра «Гекон» Михаил Григорьев счел идею строительства еще двух ЛК-60 «абсолютно правильной». Пока нет опыта эксплуатации судов для «Ямал СПГ», никто не знает, как они будут работать в течение всего года, особенно на восточном направлении, отмечает эксперт, и сейчас прогнозы о необходимом числе ледоколов «достаточно условны».

Источник: https://bmpd.livejournal.com/2991505.html

Tagged with:  

В ноябре 2017 года исполняется 50 лет со дня поднятия флага ВМФ на крейсерской атомной подводной лодке (ПЛА) «К-43» проекта 670 («Скат», заводской № 701). Лодка построена на заводе «Красное Сормово» (входит в ОСК) по проекту ЦКБ «Лазурит» и относится ко второму поколению ПЛА.

Создание этого корабля стало крупным достижением научно-технической мысли того времени. ПЛА проекта 670 была первым в мире атомным подводным крейсером с крылатыми ракетами подводного старта. Такого рода вооружение (ракетный комплекс «Аметист») обеспечивало выход ПЛА на стартовые позиции без потери скрытности, ракеты были практически неуязвимыми и могли поражать любую надводную цель.

Для обеспечения достройки, испытаний и сдачи ПЛА был создан комплекс вспомогательных средств: плавмастерская «Академик Крылов», два плавучих энергетических блока, плавучий контрольно-дозиметрический пункт, лихтёр.
Достройка и испытания ПЛА проводились в очень напряженной обстановке на Северной сдаточной базе, которой в то время руководил Ю.К. Меньщиков. Основными ответственными за организацию строительства были: директор завода М.А Юрьев, главный строитель завода К.Н. Гордеев, ответственный сдатчик Ф.Г. Преображенский, главный строитель проекта В.В. Семашко, старший технолог проекта К.С. Старцев, главный механик А.И. Нахров.

5 ноября 1967 года, через 3 года 5 месяцев и 27 дней после закладки, в городе Северодвинске председатель Государственной комиссии вице-адмирал А.И. Сорокин подписал приёмный акт.

Спустя 35 лет генеральный директор завода «Красное Сормово» Н.С. Жарков, который в то время руководил ответственными работами по устранению замечаний по результатам заводских и государственных испытаний корабля в море, сплотивший коллектив испытателей для выполнения сложнейших задач, на вопрос журналиста о самом счастливом дне в его жизни ответил: «Это день 5 ноября 1967 года, когда был подписан акт о передаче ВМФ первой сормовской ПЛА».

Всего за 10 лет заводом построено 11 кораблей проекта 670, которые успешно несли службу на Северном и Тихоокеанском флотах, став щитом для страны и угрозой для потенциального противника.

7 ноября 2017 года в АО «ЦКБ «Лазурит», который проектировал этот уникальный подводный крейсер, состоялась конференция, посвященная 50-летию сдачи ВМФ головной ПЛА проекта 670. В конференции участвовали работники и ветераны ПАО «Завод «Красное Сормово».

Источник: сайт ОСК. Группа компаний «Морские и нефтегазовые проекты»

(в работе)

От редактора: Ну вот нравится мне этот аппарат…

АО «ЦКБ по СПК им. Р.Е. Алексеева» разрабатывает сверхтяжелый транспортно-десантный экраноплан, который планируется использовать в Арктике и на Тихом океане для спасательных операций и доставки грузов на отдаленные базы, сообщают “Известия”.
Сообщается, что по своим габаритам машина будет сопоставима со знаменитым в советское время «Каспийским монстром». В КБ рассказали, что речь идет о создании базовой платформы под рабочим названием «Спасатель». Масса воздушного судна составит порядка 600 т при длине 93 м и размахе крыла 71 м. Решение в пользу крупногабаритного экраноплана было принято потому, что такие аппараты могут летать при волнении моря в 5-6 баллов.
«Уменьшенные макеты «Спасателя» уже прошли испытания в аэродинамической трубе ЦАГИ в подмосковном Жуковском, а также в специальном бассейне. Получено положительное заключение экспертов, защищен технический проект, сформирована производственная кооперация. В планах — создание полномасштабного макета с пилотской кабиной, местами операторов. Силовую установку для “Спасателя” разработает самарская компания “Кузнецов”», – говорится в материале.
Поднять аппарат в воздух планируется в 2022-2023 годах, закончить испытания – в 2025 году.
Новый экраноплан будет оснащен рампой, облегчающей погрузку и выгрузку бойцов и техники. Он сможет перевозить до 500 человек с вооружением со скоростью 550 км/ч.
По словам военно-морского эксперта Александра Мозгового, возвращение экранопланов на службу станет большим достижением для России.
“Это можно только приветствовать. Экранопланы гораздо экономичнее самолетов, можно будет оперативно перебрасывать больше груза на большее расстояние. Если удастся оснастить их шасси на воздушной подушке, то они смогут садиться даже на снежные торосы. Машина по своей уникальности будет сопоставима со знаменитым “Каспийским монстром. Для ее создания нужны высококлассные специалисты и производственные мощности. Потребуется задействовать очень значительные научно-технические и финансовые ресурсы,” –
сказал эксперт.

Источник: https://topwar.ru/
Использованы фотографии: http://www.airwar.ru

Исполинский, светящийся изнутри пароводяной купол взлетел в небо над бухтой губы Черная, на несколько секунд застыл и с грохотом осел в море, утянув за собой в пучину небольшой военный флот. В минувший вторник исполнилось ровно 60 лет со дня испытаний первой советской ядерной торпеды Т-5. Выпущенный с подводной лодки С-144 боеприпас прошел десять километров и сдетонировал на 35-метровой глубине, уничтожив два эсминца, две субмарины и два тральщика. Мощность взрыва достигла десяти килотонн.
Созданием ядерной торпеды в СССР озадачились почти сразу после испытаний первой атомной бомбы в 1949-м. Как основные средства доставки мощного ядерного боезаряда на территорию США в те годы рассматривались дальние бомбардировщики и ракеты, но первые были уязвимы для ПВО, а вторые находились на зачаточном уровне развития и надежностью не отличались.
Подлодки — другое дело. Они отлично проявили себя во Второй мировой войне, могли скрытно подобраться к вражеским берегам и нанести мощный опустошительный удар по инфраструктуре и портам. Многие советские подводники на тот момент имели отличный опыт войны на море и идеально подходили для решения таких стратегических задач.
Пожалуй, самым амбициозным проектом в истории отечественного ВМФ стала гигантская торпеда Т-15 с атомным боевым отделением, которой занялись в начале 1950-х. Суперторпедой калибра 1550 мм, массой 40 тонн и длиной более 20 метров планировалось вооружить атомные субмарины проекта 627, спроектированные специально для нее. Удары предполагалось наносить по стратегическим береговым объектам США, таким как морские порты, базы и крупные прибрежные города.
Работы по торпеде велись параллельно с испытаниями первой в мире водородной бомбы РДС-6, которую взорвали в августе 1952-го. Через два года утвердили технический проект атомной торпеды и ее носителя, впервые допустив к секретной информации моряков. Флот на всю эту историю отреагировал безрадостно — гигантский торпедный аппарат занимал пятую часть всей лодки и фактически превращал ее в “оружие одного выстрела”. Кроме того, появились обоснованные вопросы к дальнобойности и скорости торпеды, которые оставляли желать лучшего.
По этим и другим причинам в “железе” подводное оружие возмездия так и не сделали, переключившись на более скромную парогазовую 533-миллиметровую торпеду Т-5 с тактическим ядерным боезарядом РДС-9. Такой калибр для ВМФ был более привычен и позволял заряжать Т-5 в штатные аппараты субмарин.
В сентябре 1955-го на Новой Земле провели испытания боевого зарядного отделения Т-5 (см. материал 122.1). СССР впервые осуществил подводный ядерный взрыв. Заряд для торпеды опустили в воду с тральщика и подорвали на глубине 12 метров, при этом мощность составила около трех килотонн в тротиловом эквиваленте.
Спустя два года, 10 октября 1957-го, снаряженной торпедой из кормового аппарата выстрелила подводная лодка проекта 613 С-144 под командованием капитана 1-го ранга Лазарева. Взрывом потопило четыре надводных корабля-мишени и две списанные подлодки. Испытания нового оружия признали успешными, и в 1958-м его передали в ВМФ.
Т-5 стояла на вооружении до появления автономных специальных боевых зарядных отделений (АСБЗО), позволяющих при необходимости “упаковать” 20-килотонную термоядерную начинку в обычные серийные изделия. Первые стандартные 533-миллиметровые торпеды с АСБЗО начали поступать на флот уже в 1960 году.
Примечательно, что спустя несколько лет, после испытаний на Новой Земле знаменитой “Царь-бомбы” мощностью более 50 мегатонн в октябре 1961-го, идею создания сверхмощной термоядерной торпеды высказал академик Андрей Сахаров:
“После испытания “большого” изделия меня беспокоило, что для него не существует хорошего носителя (бомбардировщики не в счет, их легко сбить), то есть в военном смысле мы работали впустую. Я решил, что таким носителем может явиться большая торпеда, запускаемая с подводной лодки. Я фантазировал, что можно разработать для такой торпеды прямоточный водопаровой атомный реактивный двигатель. Целью атаки с расстояния несколько сот километров должны стать порты противника”.
Академик предлагал создать сверхторпеду мощностью 100 мегатонн в прочном корпусе, способную прорываться сквозь минные поля и сети прибрежных заграждений.

Тема сверхмощных ядерных торпед всколыхнула мировую общественность в конце 2015 года, когда на совещании в сочинской резиденции президента России Владимира Путина в объективы телекамер попал слайд с информацией о новом секретном оружии — комплексе “Статус-6” (см. серию материалов 79). Скриншот с описанием этой системы был мгновенно растиражирован в десятках российских и зарубежных СМИ.
На слайде угадывались силуэты атомных подлодок специального назначения “Белгород” и “Хабаровск”, оборудованных стыковочными узлами на днище и способных нести глубоководные аппараты. В центре схемы была размещена огромная торпеда с невероятными характеристиками: дальность 10 тысяч километров, глубина погружения 1000 метров, максимальная скорость — до 100 узлов.
Из описания проекта следовало, что система предназначена для нанесения гарантированно неприемлемого ущерба противнику путем создания зон обширного радиоактивного загрязнения на побережье, непригодных для жизнедеятельности человека в течение длительного времени. СМИ выдвигали предположения, что таких тотальных последствий можно добиться только одним способом — “грязным” взрывом так называемой кобальтовой бомбы.
В конце 2016 года издание Popular Mechanics со ссылкой на источники в Пентагоне сообщило о подтвердившемся факте испытаний “Статуса-6” и назвало это “очень плохой новостью”. По данным американской разведки, суперторпеда была запущена с подлодки специального назначения Б-90 “Саров”.
По мнению американцев, в случае глобального конфликта носитель способен доставить к побережью США термоядерный боезаряд мощностью до 100 мегатонн и вызывать цунами, которое смоет в океан всю прибрежную инфраструктуру вместе с авианосцами, оборонными заводами и целыми городами. О самом испытании и о том, на какой стадии программа “Статус-6” может находиться сегодня, информация в открытых источниках на данный момент отсутствует.

По материалам: РИА Новости https://ria.ru/defense_safety/20171010/1506574658.html

К 85-летию со дня рождения Г.Н.Чернышёва

Л. А. Самаркин, ФГУП «СПМБМ «Малахит»

Выдающееся место в истории отечественного атомного подводного флота принадлежит Генеральному конструктору Георгию Николаевичу Чернышёву. По его проектам 671, 671 РТ, 671 РТМ и 971, хорошо известным морякам-подводникам, в 1967-2001 гг. было построено и сдано Во­енно-Морскому флоту более 60-ти многоцелевых атомных подводных ло­док.
Георгий Николаевич родился 23 августа 1919 г. в г. Николаеве. По­сле окончания в 1943 г. Николаевского кораблестроительного института был направлен на работу в ЦКБ-18 (ныне ЦКБ МТ «Рубин»). С этого вре­мени все отпущенные ему 54 года работы были отданы созданию подвод­ного флота страны. 1943-1948 гг. Г.Н.Чернышёв работал в ЦКБ-18 над послевоенными проектами дизель-электрических подводных лодок. В группе специалистов был командирован в Германию для сбора и изучения материалов по немецким газотурбинным подводным лодкам, а затем (1948-1953 гг.) тру­дился над аналогичной отечественной ПЛ (проект 617) во вновь созданном Специаль­ном конструкторском бюро № 143. Внёс ряд усовершенство­ваний в конструкции и системы корабля, прошёл путь от инженера-конст­руктора до заместителя начальника отдела.
В сентябре 1952 г. Г.Н.Чернышёв в составе небольшой группы спе­циалистов СКБ-143 под руководством В.Н.Перегудова и под научным ру­ководством академика А.П.Александрова работал на территории Института атомной энергии (ИАЭ) имени И.В.Курчатова (Москва) над решением проблемы создания атомной подводной лодки на базе ядерной паропроизводящей установки главного конструктора Н.А.Доллежаля.
В 1953-1956 гг. в реорганизованном СКБ-143 в должности заместителя начальника отдела главной механической установки он принимает ак­тивное участие в создании паротурбинной установки большой мощности для первой отечественной АПЛ проекта 627. За эту работу Г.Н.Чернышёв награжден орденом Трудового Красного Знамени.

Творческие способности, широкий кругозор и стремление к поиску нетрадиционных решений открыли Г.Н.Чернышёву дорогу к новому про­ектированию. С ноября 1956 г. в должности заместителя главного конст­руктора он участвует в разработке АПЛ проекта 639 с баллистическими ракетами большой дальности системы М.К.Янгеля. В 1957 г. был успешно завершён эскизный проект, но из-за прекращения работ по ракетному ком­плексу в 1958 г. были прекращены работы и по проекту подводной лодки. Между тем в проекте 639 были глубоко проработаны принципиально важ­ные для подводного кораблестроения вопросы: переход на переменный ток в силовой сети корабля, повышение параметров в системе ВВД (воздух высокого давления), создание новой высокопрочной стали и переход на большие диаметры прочного корпуса и целый ряд других. Более того, Г.Н.Чернышёвым был проработан и представлен вариант АПЛ с увеличенным числом тяжёлых баллистиче­ских ракет (против 3-х заданных) и показано, что при предлагаемых про­стых проектных решениях число ракет может быть значительно увеличено.
Указанные наработки вместе с другими проектными и инициатив­ными предложениями были использованы в конкурсных предложениях по АПЛ второго поколения. По итогам конкурса СКБ-143 заняло первое ме­сто. В соответствии с принятой специализацией СКБ-143 было поручено проектирование противолодочной подводной лодки проекта 671, и Георгий Николаевич был назначен главным конструктором этого проекта.

В результате напряженной работы головная подводная лодка проекта 671 в 1967 г. вступила в строй. Трудно переоценить значение этого корабля в отечественном подводном кораблестроении. Был создан принципиально новый архитектур­ный тип одновальной АПЛ с осесимметричной формой корпуса, с опти­мальными по пропульсивным качествам удлинением корабля и его обво­дами, с развитым крестообразным кормовым оперением, которое обеспечивало устойчивость движения на рекордной для того времени скорости (ок. 34-х узлов) и, в то же время, с помощью рулей, работающих как закрылки кормовых стабилизаторов, обеспечивало кораблю исключительно высокую маневренность.
Такой форме отвечали и осуществленные в проекте решения: пере­ход на увеличенные диаметры прочного корпуса и ставшие классическими компоновки современной гидроаккустики с торпедным оружием в носовой оконечности и одновальной ГТЗА с автономными турбо-генераторами в одном отсеке. Получению высоких тактико-технических характеристик (ТТХ) способствовала жёсткая борьба за мини­мальное водоизмещение, что обеспечило в дальнейшем создание моди­фикаций проекта и строительство их на внутренних заводах. Задуманная как противолодочная, подводная лодка превратилась в многоцелевую с торпедным вооружением. Затем в процессе строитель­ства появились и ракеты, стартующие из торпедных аппаратов (комплекс «Вьюга»).
За создание АПЛ проекта 671 Г.Н.Чернышёву было присвоено зва­ние Героя Социалистического труда. Прогрессивные проектные решения и полученные высокие ТТХ яви­лись хорошей основой для модификаций проекта с целью дальнейшего по­вышения его военно-экономической эффективности.
Через пять лет в 1972 г. флоту был сдан головной корабль проекта 671 РТ – с увеличенным торпедным вооружением и установкой новых дальноходных торпед 650-мм калибра, с блочной компоновкой ПТУ, со сниженной шумностью. За эту работу Г.Н.Чернышёв был удостоен звания лауреата Государственной премии. В это же время под руководством Г.Н.Чернышёва велись инициатив­ные работы по дальнейшему развитию базового проекта. Был предложен проект 671 РТМ, головной корабль этого проекта был сдан флоту в 1976 г.
На подводной лодке пр. 671 РТМ были установлены головные образ­цы радиоэлектронного вооружения (гидроакустика, навигация, БИУС), создаваемые для проектов третьего поколения, снижена шумность, учтен опыт эксплуатации АПЛ проектов 671 и 671 РТ. Впервые на ней появились неакустические средства обнаружения ПЛ и высокоточное ракетное ору­жие для нанесения ударов по территории вероятного противника. Тактико­-технические характеристики кораблей этого проекта, названного «Щукой», были столь высоки, что они строились огромной серией (26 единиц) на двух заводах: Адмиралтейском в Ленинграде и им. Ленинского комсомола в Косомольске-на-Амуре, а последний корабль был сдан в 1992 г. – че­рез 8 лет после сдачи многоцелевых АПЛ 3-го поколения (проекты 945 и 971). За создание проекта 671 РТМ Г.Н.Чернышёв был награжден орденом Ленина. Подводные лодки проектов 671, 671 РТ и 671 РТМ (всего 48 единиц) стали безотказными «рабочими лошадками», которые всегда возвращались к своим берегам.

В 1974 г. Г.Н.Чернышёв назначается начальником – главным кон­структором Союзного проектно-монтажного бюро машиностроения «Ма­лахит», объединившего коллективы СКБ-143 (СПМБМ) и ЦКБ-16 (ЦПБ «Волна»). Под его руководством ведутся проработки многоцелевой АПЛ 3-его поколения со стальным корпусом. В 1976 г. был представлен со­кращенный эскизный проект этого корабля, которому был присвоен номер 971. Головная АПЛ пр. 971 прошла испытания в 1984 г. В этом же году Г.Н.Чернышёву присваивается звание Генерального конструктора.
Строительство АПЛ проекта 971 разворачивается на заводах в Комсомольске-на-Амуре и в Северодвинске. Освободившись в 1986 г. от должности начальника бюро и главного конструктора проектов 671, 671 РТ и 671 РТМ, все свои усилия Георгий Николаевич сосредотачивает на совершен­ствовании строящихся многоцелевых АПЛ проекта 971. Проект 971, как и проект 671, занимает особое место в творческой биографии Г.Н.Чернышёва – снова создается «базовая» многоцелевая АПЛ с оптимальными характеристиками и большими модернизационными возможностями. Но главным в этом проекте были исключительно низкие уровни акустического поля и установка нового значительно более эффективного гидроакустического комплекса.

Георгий Николаевич упорно и целеустремленно шёл к достижению пари­тета с США во взаимном обнаружении АПЛ. Он складывается из трех основных составляющих: собственной шумности АПЛ, потенциала её гидроакстического комплекса и корабельных помех работе ГАК. Мно­голетняя гонка за этим убегающим призраком достигла успешного фи­ниша постройкой серийных ПЛ проекта 971. Был завершён огромный труд, с учетом предложений институтов и Заказчика, найдены и реализованы нетрадиционные конструктивные решения.
Уже испытания головного корабля проекта 971 показали, что мы вы­ходим на уровень лучших зарубежных аналогов, а дальнейшее совершен­ствование серийных кораблей закрепило этот успех. В последних кораблях серии было достигнуто превосходство над усовершенствованными лодка­ми типа «Лос-Анджелес» и, по мнению зарубежных специалистов, уровень скрытности нашх кораблей приблизился к таковому у американской много­целевой АПЛ 4-го поколения «Сивульф».

Так закончилась многолетняя трудная борьба за лик­видацию нашего отставания в важнейшей характеристике подводной лод­ки – её скрытности. И вклад Георгия Николаевича в решение этой государственной проблемы невозможно переоценить. За этот проект Г.Н.Чернышёв был удостоен звания Лауреата Государственной премии РФ.
Личностные качества Г.Н.Чернышёва как главного конструктора и как человека являются важнейшим фактором, определившим успех разви­тия АПЛ из противолодочных с торпедным вооружением в многоцелевые с торпедо­ракетным оружием и высокими ТТХ. Речь идет не только о бремени огромной ответственности главного конструктора за все решения, принятые в проекте, не только о том, что под всеми документами по передаче ВМФ каждой построенной по его проектам АПЛ стоит его подпись. Это талант конструктора, помноженный на огромное трудолюбие и чув­ство ответственности, способность внимательно и вдумчиво анализировать множество вариантов и выбирать нужный. Как дирижёр огромного оркест­ра при помощи различных инструментов создаёт ярко и гармонично звучащее произ­ведение, так и Г.Н.Чернышёв создавал свои стремительные и элегантные корабли. Он был терпим к оппонентам и обладал прекрасным чувством юмора. За 40 лет ему частенько приходилось доказывать свою правоту, спорить, настаивать, уговаривать. И чаще всего он добивался нужного решения.
В нём жило вечное стремление повысить эффективность своих ко­раблей не только в период их проектирования, но и в процессе строительства. Так было с образцами торпедо-ракетного оружия, с акусти­ческими и неакустическими средствами обнаружения. Все самые совер­шенные изделия начинали свою жизнь с его кораблей. Так было с его наи­более «многоцелевыми» проектами – 671 РТМ и 971. Они родились вне «плана», родились из инициативных предложений главного конструктора.
Но за постоянным стремлением к повышению эффективности кораблей и внедрению нового ощущалось умение твердо стоять на земле. Были смелые решения, но не было ошибок. Георгий Николаевич был разумным, рас­судительным человеком и понимал, что флоту нужен не только эффективный, но и надежный корабль, и нужен этот корабль своевременно. Чернышёв с большим уважением относился к морякам-подводникам, ценил их опыт и знания, был внимателен к предложениям флота.

Георгий Николаевич Чернышёв скончался в 1997 г. В последние годы своей жизни он много внимания уделял развитию на­учно-технического потенциала АПЛ многоцелевого назначения. А исход­ные позиции для дальнейшего совершенствования АПЛ проекта 971 были даже лучше, чем у проекта 671 в своё время. Беспокоило его сохране­ние этого класса кораб­лей в составе ВМФ в создавшейся тяжёлой экономической обстановке. Г.Н.Чернышёв считал, что многоцелевые АПЛ в со­ставе российского флота приобретают исключительно большое значение. Его обращение к руководству ВМФ и Министерству обороны по этому вопросу воспринима­лись с пониманием. Но практических шагов для предотвращения катаст­рофического уменьшения многоцелевых лодок в составе ВМФ предприня­то не было.

Будем надеяться, что угроза нашей безопасности, которая безусловно существует, заставит обратить самое серьезное внимание на развитие этого класса кораблей.

Источник: Сайт ProAtom 02/10/2017

От редактора: “К слову, 671 РТМ был моим первым “родным” кораблем, с которым я познакомился детально. Я облазил его “от киля до клотика”, побывал везде, спал в шпациях. Отличный пароход. Это было понятно. Не без недочетов, но отличный. Закономерным развитием идеи стало появление 971 проектов, которые и сегодня можно назвать одними из лучших кораблей в классе. Если не лучшими. Подождем полной серии 885-го”.

Недавно высказал свою точку зрения на развитие АЭУ специального назначения в комментарии на некий пост на известном сайте. Удалили мгновенно и пост и мой комментарий. Видимо это пока остается большим секретом. Но так как я не обременен подписками и полагаюсь лишь на собственные знания и анализ ситуации… И тем не менее, если бы я получил задание на проектирование, на какие вопросы прежде всего надо ответить при рассмотрении возможного девайса (см. фото):
1. Глубина размещения?
– Ну к примеру можно принять за 1,000 метров. Такие глубины обследовать уже очень трудно.
2. Долгосрочное “хранение”. Будет обрастать ли нет? А также: Будет “заиливаться” или погружаться в песок?
– Видимо целесообразно монтировать на платформе, хотя это увеличивает возможность обнаружения. Тогда маскировать под скалу или размещать в расщелинах. Но на единой платформе можно размещать не одно устройство. И аккумуляторы можно держать на на устройстве, а отстреливать с платформой.
3. Корпус не прочный?
– Разумеется разгруженный, материал титан или даже алюминий.
4. Тип реактора? Конструкция установки?
– Ой-ой-ой. Очевидно, что электродвижение и “быстрый”. Подруливающие в комбинации с рулями.
5. Дальность?
– Наверное около 2,000-5,000 км.
6. Скорость?
– Наверное около 100 км/час, в узлы пересчитывать на буду. Соответственно ЭУ должна работать максимум 25 -50 часов на полной мощности
7. Скрытность?
– Во всяком случае ГАС должна быть. Если не на девайсе, то на платформе размещения.
8. “Грузоподъемность”?
– Наверное до полутора тонн “гамбургеров и кока-колы”
9. Размеры?
– 2… 2.5 м диаметр с относительным удлинением 8… 10 (см. фото, прототип видимо масштабированный, хотя если посмотреть на человека на вторром плане…).
10. Требуемая мощность ЯР и прочие параметры?
– Можно подсчитать.

Tagged with:  

Взрывы произведенные в СССР (по регионам).

Архангельская область:
«Глобус-2». 80 км северо-восточнее Котласа, 2,3 килотонны, 4 октября 1971 года.
«Рубин-1». В этом же месте. Последний промышленный ядерный взрыв в СССР. 8,5 килотонны, 6 сентября 1988 года.
«Агат». 150 км западнее города Мезень, 19 июля 1985 года, 8,5 килотонны. Сейсмозондирование.

Астраханская область:
15 взрывов по программе «Вега» — создание подземных ёмкостей для хранения газоконденсата. Мощность зарядов — от 3,2 до 13,5 килотонны. 40 км от Астрахани, 1980—1984 годы.

Башкортостан:
Серия «Кама». Два взрыва по 10 килотонн 26 октября 1973 года и 8 июля 1974 года в 100 км южнее города Уфа. Создание подземных ёмкостей для захоронения промышленных стоков Салаватского нефтехимического комбината и Стерлитамакского содово-цементного комбината.
В 1980 году — пять взрывов «Бутан» мощностью от 2,3 до 3,2 килотонны в 10 км к северо-западу от города Мелеуза на Грачёвском нефтяном месторождении. Интенсификация добычи нефти и газа.

Иркутская область:
«Метеорит-4». 120 км северо-восточнее города Усть-Кут, 10 сентября 1977 года, мощность — 7,6 килотонны. Сейсмозондирование.
«Рифт-3». 160 км севернее Иркутска, 31 июля 1982 года, мощность — 8,5 килотонны. Сейсмозондирование.

Кемеровская область:
«Кварц-4», 50 км юго-западнее Мариинска, 18 сентября 1984 года, мощность — 10 килотонн. Сейсмозондирование.

Мурманская область:
«Днепр-1». 20-21 км северо-восточнее Кировска, 4 сентября 1972 года, мощность — 2,1 килотонны. Дробление апатитовой руды.
«Днепр-2». В 1984 году, 27 августа, там же был произведён аналогичный взрыв.

Ивановская область:
«Глобус-1». 40 км северо-восточнее Кинешмы, 19 сентября 1971 года, мощность — 2,3 килотонны. Сейсмозондирование.

Калмыкия:
«Регион-4». 80 км северо-восточнее Элисты, 3 октября 1972 года, мощность — 6,6 килотонны. Сейсмозондирование.

Коми:
«Глобус-4». 25 км юго-западнее Воркуты, 2 июля 1971 года, мощность — 2,3 килотонны. Сейсмозондирование.
«Глобус-3». 130 км юго-западнее города Печоры, 20 км восточнее железнодорожной станции Лемью, 10 июля 1971 года, мощность — 2,3 килотонны. Сейсмозондирование.
«Кварц-2». 80 км юго-западнее Печоры, 11 августа 1984 года, мощность — 8,5 килотонны.

Красноярский край:
«Горизонт-3». Озеро Лама, мыс Тонкий, 29 сентября 1975 года, мощность — 7,6 килотонн. Сейсмозондирование.
«Метеорит-2». Озеро Лама, мыс Тонкий, 26 июля 1977 года, мощность — 13 килотонн. Сейсмозондирование.
«Кратон-2». 95 км юго-западнее города Игарки, 21 сентября 1978 года, мощность — 15 килотонн. Сейсмозондирование.
«Рифт-4». 25-30 км юго-восточнее посёлка Ногинска, мощность 8,5 килотонны. Сейсмозондирование.
«Батолит-1», 1 ноября 1980 года
«Рифт-1». Усть-Енисейский район, в 190 км западнее Дудинки, 4 октября 1982 года, мощность — 16 килотонн. Сейсмозондирование.

Ненецкий автономный округ:
«Пирит», Кумжинское месторождение В 1980 году в Ненецком автономном округе на скважине Кумжа-9 произошёл выброс газа во время бурения, после чего начался пожар. 25 мая 1981 года на месторождении на глубине порядка 1,5 тыс. м был взорван ядерный заряд, мощность которого составила 37,6 килотонны, целью взрыва был сдвиг геологических пластов. Полностью аварию ликвидировать не удалось, месторождение законсервировали, в настоящее время его территория относится к Ненецкому заповеднику

Оренбургская область:
«Магистраль» (другое название — «Совхозное»). 65 км северо-восточнее Оренбурга, 25 июня 1970 года, мощность — 2,3 килотонны. Создание полости в массиве каменной соли на Оренбургском газонефтяном конденсатном месторождении.
Два взрыва по 15 килотонн «Сапфир» (другое название — «Дедуровка»), произведённые в 1971 и 1973 годах. Создание ёмкости в массиве каменной соли.
«Регион-1» и «Регион-2»: в 70 км юго-западнее города Бузулук, мощность — 2,3 килотонны, 24 ноября 1972 года. Сейсмозондирование.

Пермская область:
«Грифон» — в 1969 году два взрыва по 7,6 килотонны в 10 км южнее города Оса, на Осинском нефтяном месторождении. Интенсификация добычи нефти.
«Тайга». 23 марта 1971 года, три заряда по 5 килотонн в Чердынском районе Пермской области, в 100 км севернее города Красновишерск. Экскавационные, для строительства канала Печора — Кама.
Пять взрывов мощностью 3,2 килотонны из серии «Гелий» в 20 км юго-восточнее города Красновишерск, которые производились в 1981—1987 годах. Интенсификация добычи нефти и газа на Гежском нефтяном месторождении.
19 апреля 1987 года, на севере Пермской области по заказу ПО «Пермнефть» два подземных ядерных взрыва мощностью до 20 килотонн. Интенсификация добычи нефти.

Ставропольский край:
«Тахта-Кугульта». 90 км севернее Ставрополя, 25 августа 1969 года, мощность — 10 килотонн. Интенсификация добычи газа.

Ханты-Мансийский автономный округ – Югра:
«Кратон-1». окрестности п. Игрим, 17 октября 1978 года, 22 килотонны, глубина 593 м. Сейсмозондирование.
«Кимберлит-1». п. Лемпино, около 150 км юго-восточнее города Ханты-Мансийск, 4 октября 1979 года, 22 килотонны, глубина 837 м. Сейсмозондирование.
«Ангара». 12 км северо-восточнее посёлка Пальянова Октябрьского района, 10 декабря 1980 года, мощность — 15 килотонн, глубина 2485 м. Интенсификация добычи нефти.
«Кварц-3». окрестности города Лянтор, около 100 км северо-западнее города Сургут 25 августа 1984 года, мощность — 8,5 килотонн, глубина 730 м. Сейсмозондирование.
«Бензол». 10 км северо-восточнее посёлка КС-5, окрестности города Пыть-Ях, 18 июня 1985 года, мощность — 2,5 килотонн, глубина 2850 м. Интенсификация добычи нефти.

Якутия:
«Кристалл». 70 км северо-восточнее посёлка Айхал, в 2 км от посёлка Удачный-2, 2 октября 1974 года, мощность — 1,7 килотонны. Создание плотины для Удачнинского горно-обогатительного комбината.
«Горизонт-4». 120 км юго-западнее города Тикси, 12 августа 1975 года, 7,6 килотонны.
С 1976 по 1987 годы — пять взрывов мощностью 15 килотонн из серий взрывов «Ока», «Шексна», «Нева». 120 км юго-западнее города Мирный, на Среднеботуобинском нефтяном месторождении. Интенсификация добычи нефти.
«Кратон-4». 90 км северо-западнее посёлка Сангар, 9 августа 1978 года, 22 килотонны, сейсмозондирование.
«Кратон-3», 50 км восточнее посёлка Айхал, 24 августа 1978 года, мощность — 19 килотонн. Сейсмозондирование.
Сейсмозондирование. «Вятка». 120 км юго-западнее города Мирный, 8 октября 1978 года, 15 килотонн. Интенсификация добычи нефти и газа.
«Кимберлит-4». 130 км юго-западнее Верхневилюйска, 12 августа 1979 года, 8,5 килотонны, сейсмозондирование.

Казахская ССР:
«Азгир». 17 взрывов (22 ядерных заряда). Площадка «Галит» 180 км севернее Астрахани, Гурьевская область, 1966—1979 гг. 0,01-150 кт.
«Батолит-2». 320 км юго-западнее г. Актюбинск, Актюбинская область, 3 октября 1987 года, 8,5 кт, глубина 1002 м. Сейсмозондирование.
«Лазурит». Урочище Муржик, Семипалатинский испытательный полигон, 7 декабря 1974 года, 4,7 кт, глубина 75 м. Перемещение части горного склона для строительства плотины.
«Лира». 6 взрывов для создания полостей под подземные газохранилища на Карачаганакском газоконденсатном месторождении в Западно-Казахстанской области.
«Сай-Утёс» (неофициальное название «Мангышлак»). 3 взрыва. 100—150 км юго-восточнее пос. Сай-Утёс, Мангышлакская область, 1969—1970 гг., 30-80 кт. Для создания провальной воронки.
«Меридиан-1». 110 км восточнее г. Аркалык, Целиноградская область, 28 августа 1973 г., 6,3 кт. Сейсмозондирование.
«Меридиан-2». 230 км юго-восточнее г. Джезказган, Чимкентская область, 19 сентября 1973 г., 6,3 кт. Сейсмозондирование.
«Меридиан-3». 90 км юго-западнее г. Туркестан, Чимкентская область, 19 августа 1973 г., 6,3 кт. Сейсмозондирование.
«Регион-3». 250 км юго-западнее г. Уральск, Уральская область, 20 августа 1972 г., 6,6 кт. Сейсмозондирование.
«Регион-5». 160 км юго-восточнее г. Кустанай, Кустанайская область, 24 ноября 1972 г., 6,6 кт. Сейсмозондирование.
«Сары-Узень» (он же «Скважина 1003»). Семипалатинский испытательный полигон, 14 октября 1965 г., 1,1 кт. Экскавационный, калибровочный для создания воронки для водоёма.
«Телькем-1». Семипалатинский испытательный полигон, 21 октября 1968 г., мощность 2 х 0,24 кт. Калибровочный выброс грунта для создания воронки для водоёма.
«Телькем-2». Семипалатинский испытательный полигон, 12 ноября 1968 г., мощность 3 х 0,24 кт. Экскавационный калибровочный для формирования траншеи.
«Штольня». 36 взрывов на Семипалатинском испытательном полигоне, 1964—1984 гг., мощность 0,01-150 кт.
«Чаган». Семипалатинский испытательный полигон, 15 января 1965 г., мощность 140 кт. При взрыве в скважине 1004 создан искусственный водоём, который был заполнен водой из специально созданного водохранилища на Чаган. Для создания водохранилища была построена каменно-земляная плотина с бетонным водосбросом. Первый (и самый мощный из всех проведённых) промышленный ядерный взрыв (см. видео).

Узбекская ССР:
«Урта-Булак», газовое месторождение «Урта-Булак», Бухарская область, 80 км южнее г. Бухара, 30 сентября 1966 года, 30 кт, глубина 1532 м. Тушение горящей газовой скважины (см. видео).
«Памук», Газовое месторождение «Памук» Кашкадарьинская область, 70 км западнее г. Карши, 21 мая 1968 г., 47 кт, глубина 2440 м. Тушение горящей газовой скважины.

Украинская ССР:
«Кливаж». Донецкая область, г. Юнокоммунаровск, Енакиевского горсовета. 16 сентября 1979 года. Мощность — 0,3 кт, глубина 903 м. Цель — предупреждение выбросов метана и угля.
«Факел». Харьковская область, Красноградский район, с. Крестище (20 км севернее г. Красноград). 9 июля 1972 года. Мощность — 3,8 кт, глубина 2483 м. Перекрытие аварийного газового фонтана. Цель не была достигнута.

Туркменская ССР:
«Кратер». Марыйская область, 30 км юго-восточнее г. Мары 11 апреля 1972 года. Мощность 15 кт, глубина 1720 м. Перекрытие скважины аварийного газового фонтана.

108. Атомная батарейка

On June 24, 2017, in Разное, by admin

От редактора: Вот появилась интересная информация. На первый взгляд, ничего особенного. Но лишь на первый. Присоедините это сообщение к постам по теме 76 в нашем блоге. И разговор здесь даже не о размерах и вольтаже, а именно о сроке службы и о принципе работы.

(фото)

Круглое в середине – собственно бетавольтаический элемент, а остальное подставка. Слева в кюветах лежат собственно диоды с альмазным полупроводником – преобразователи потока бета излучения.

В СМИ неоправданно много ажиотажа возникло вокруг “ядерной батарейки” – прототипа бетавольтаичного источника на основе Ni-63. Хотя с технической стороны изделие довольно интересное. Источник бета-электронов из 30 миликюри никеля 63 на нержавейке размером примерно в квадратный сантиметр прижат к диоду из алмазного полупроводника. КПД преобразования около 9% (выше, чем для кремния, где получается 4-6%), мощность 1 микроватт. Мой сцинциляционный дозиметр (Atom Fast), положенный на батарейку скорее ничего не видел, чем видел (15-18 мкР/ч) – бета-излучение, понятно, поглощается все внутри, а вот тормозной рентген, по идее должен быть, но видно, слишком малая энергия фотонов и относительно небольшой общий поток сливаются с фоном.

В целом пока перспективы применения туманные – интерес со стороны производителей кардиостимуляторов есть, но на уровне поговорить и посмотреть. В целом такие источники обладают предельной удельной мощностью порядка 100 мкВт на кубический сантиметр, если заполнить блок АЭС полностью такими таблетками, то получится что-то около 20 мегаватт.

Источник: http://tnenergy.livejournal.com/110137.html

Tagged with:  

(в работе)

ОКР Скиф – KANYON Необитаемый подводный аппарат (“роботизированное подводное средство” лодочного базирования). Головное КБ по теме ОКР “Скиф” – ЦКБ МТ “Рубин” (г.Санкт-Петербург), разработчик “изделия” или пускового устройства – ГРЦ им. Макеева (г.Миасс). Первоначальные работы по теме НИР “Спилит” удачно проведены отделом №118 ГРЦ Макеева совместно с ленинградскими КБ подводного судостроения “Рубин” в 1988-1990 г.г. После проведения конкурса в начале 1990-х годов ГРЦ начинает полномасштабную разработку ОКР “Скиф” по заказу Министерства обороны России. В конце 1990-х годов ГРЦ по предложению ЦКБ МТ “Рубин” должен был стать головной организацией по созданию и изделия и комплекса “Скиф”, но это предложение не было утверждено и головным КБ (вероятно) стало ЦКБ МТ “Рубин”. Главный конструктор направления в ГРЦ Макеева – А.П.Шальнев.
Выпуск конструкторской документации начат в 2005 г. (вероятно завершен в 2008 г.) В то же время начато и производство опытных образцов по теме “Скиф”. В 2007-2009 г.г. в ГРЦ Макеева проводятся испытания узлов и агрегатов по теме ОКР на вакуумно-динамическом стенде. В 2008 г. проведены испытания на прочность узлов, испытания в моделирующий гидродинамические нагрузки установке и функциональные испытания.
Первые успешные испытания прототипов по теме ОКР “Скиф” проведены стартом изделия-прототипа в октябре 2008 г. Испытания изделий-прототипов ведется с опытовой ПЛ Б-90 “Саров” пр.20120 с привлечением спасательного судна “Звездочка” пр.20180 со специальной баржей плавучего испытательного комплекса пр.20210 (ПИК). Так же, вероятно, испытания изедий-прототипов возможны с использованием ПИК и спасательного судна “Звездочка” без привлечения ПЛ Б-90 “Саров”.
По западным оценкам от испытаний прототипа до боевого образца системы KANYON пройдет еще несколько лет. Назначение изделия создаваемого в рамках ОКР “Скиф”:
– По версии, озвученной “Известиями”, ведется разработка ракеты, выгружаемой под водой из подводной лодки и находящейся в режиме ожидания команды на старт на дне моря.
– Одна из версий – разработка транспортно-пускового контейнера для обеспечения пуска крылатых и/или баллистических ракет с большой глубины.
– Одна из первых версий – подводный снаряд с ракетным двигателем, проходящий некоторый путь до цели под водой с последующим пуском крылатой ракеты средней дальности (500-2000 км) по наземной цели.
– 26.12.2014г. в СМИ появилась информация об испытаниях на ПЛ “Саров” робототехнических средств нового поколения, которые предназначены в том числе для уничтожения АУГ противника. Разработка средств завершится к 2016 г. (источник, источник).
– 08.09.2015 г. в западных СМИ появилась информация о разработке в России необитаемого подводного аппарата KANYON, оснащенного ядерной боеголовкой мегатонного класса и предназначенного для уничтожения прибрежных целей, военно-морских баз и портов (источник). Обсуждается и множество других вариантов возможного назначения изделия – достоверных версий на текущий момент нет. Судя по отрывочным данным об энергетической установке изделия, назначение единственное (прим. Редактора).

Пусковая установка:
Пуск изделия вероятней всего производится через специальную пусковую установку оригинальной конструкции, размещенную в носовой части опытовой ПЛ “Саров” пр.20120. Возможно, пусковая установка является многозарядной револьверного типа. Работу пусковой установки обеспечивает дополнительный источник энергии. Проведение испытаний изделия:
В испытаниях изделия по теме ОКР “Скиф” задействуется так же спасательное буксирное судно “Звездочка” пр.20180 со специальной баржей плавучего испытательного комплекса пр.20210 (ПИК). На барже ПИК над сквозным колодцем устанавливается специальный захват для подъема предметов со дна. Предположительно после проведения испытания изделие оказывается на дне, над ним позиционируется ПИК и с помощью спасательного судна “Звездочка” осуществляется позиционирование захвата, захват изделия и подъем под ПИК (или в ПИК) с последующей транспортировкой на базу без подъема изделия над поверхностью воды с целью маскировки. Система управления и наведение: т.к. природа изделия пока не ясна, то строить предположения пока рано. В 2010 г. ГРЦ Макеева велись работы по отладке электронных узлов аппаратуры по теме “Скиф” (см. Годовой отчет по результатам…). Позже в 2012 г. ОАО ВНИИРА (НИИ радиоэлектронной аппаратуры) были выполнены инвестиционные вложения в оборудование для работ в рамках темы ОКР “Скиф”.
Двигатели – предположительно или ракетный двигатель (РДТТ или ЖРД) или водометный (?) (KANYON, согласно иллюстрации источника). Водометный движитель подразумевает источник энергии (прим. Редактора).

ТТХ аппарата:
Длина – ок.16,8 м
Диаметр – не менее 2 м*
Тип БЧ:
По западным оценкам мощность термоядерной БЧ НПА KANYON составляет “десятки” мегатонн (источник)*.
Оборудование:
По оценке иллюстрации западного источника аппарат может оснащаться активными средствами гидроакустического противодействия в носовых пусковых установках.
Носители:
– ПЛ пр.20120 Б-90 “Саров” – является опытовой подводной лодкой с которой проводятся испытания изделия, созданного в рамках работ по теме ОКР “Скиф”.- ПИК пр.20210 – плавучий испытательный комплекс – вероятно, так же может производить пуски изделия с целью испытаний. Так же используется для подъема изделий после испытаний с ПЛ Б-90 “Саров” пр.20120
Состояние проекта (СССР/Россия):
– 2008 г. октябрь – по информации источников состоялся первый успешный пуск изделия по теме ОКР “Скиф” с ПЛ Б-90 “Саров”.
– 2009 г. октябрь – ПЛ Б-90 “Саров” пр.20120 совершила выход в Белое море. Вероятно, для проведения испытаний в рамках ОКР “Скиф”. 2012 г. 29 октября – ПЛ Б-90 “Саров” вышла в море на испытания.
– 2013 г. 21 мая – “Известия” сообщают, что в конце мая – июне 2013 г. в Белом море с борта ПЛ Б-90 “Саров” пройдет испытание ракетной системы “Скиф” с подводным стартом баллистической ракеты***.
– 2015 г. 08 сентября – первое упоминание проекта необитаемого подводного аппарата KANYON в открытой западной прессе. Р.Х.

Примечания редактора:
* Скорее всего чуть побольше, с относительным удлинением порядка 9…10 диаметров корпуса. На наш взгляд скорее 2 метра диаметр и 20 метром длины.
** Это вряд-ли, но блок Мегатонной мощности, вполне может быть.
*** Все-таки похоже на смешение понятий новой баллистической ракеты и подводного необитаемого аппарата (ПА), как средства доставки боевой части именно под водой. Хотя возможны оба варианта, и ПА платформы для подводного донного старта. В этом случае энергетическая установка открывает серьезные перспективы для использования любой рассматриваемой системы.

Источник: Аналитический центр “Международная безопасность” (страница FaceBook)

Maximum deepness of atomic submarines: classical equations

As supplement to material №102 about spherical elements of U-boat, in this article we will appreciate:

* How much times grows work deepness, if we use spheres instead of cylinders?
* What value can reach work deepness of submarines during nearest decades?
* Is it possible to create atomic submarines with work deepness 4600 – 5500 meters, which allows to reach the bottom of all oceans, correspondingly, on 60% and on 90% of ocean’s surface area?

Also as we remember, usage of supercritical LWRs requires some more then 225 atmospheres of pressure, which corresponds to depth 2200 meters. So as external tubes are recognized as most sensitive component of submarine, usage of such LWRs automatically provides deepness 2200 meters by factor of external tube system.
Ability to reach bottom of the ocean in any chosen place, gives an opportunity to do new hiding tactics, especially if submarine is atomic and equipped with nuclear warheads in torpedoes. Even if not, anti-submarine operations will require the third dimension (altitude) because work depth will become many times bigger then effective radius of unguided sea weapons.

Lets imagine, that robust housing of submarine is made using cylinder with length ‘L‘, radius ‘R‘ and half-spheres on end-faces, radius ‘R‘. Wall thickness everywhere is ‘d‘.
So volume of replaced water for this form will be V = cylinder + two halfspheres =(Pi*L*R^2) + (2*(1/2)*(4Pi/3)*R^3) = (Pi*R^2)*(L+(4R/3)) ;
Lets mark the value X = (length/diameter) = (L+ 2R)/(2R).
We can see that 1<X<infinity, and that L = 2R(X-1) ;
Volume of the replaced water is V = (Pi*R^2)*(2RX – 2R + (4R/3)) = (2Pi/3)*(R^3)*(3X-1) ;

Lets suppose, that thickness of shield ‘d’ is d<<R, density of steel is ‘p‘, in this case mass of shield is:
M = V(cylinder)*p + V(sphere)*p = 2Pi*R*L*p*d + 4Pi(R^2)*dp = {L=2R(X-1)} =
= 2PiR*p*d*(2R(X-1)) + 4Pi(R^2)*p*d = 4Pi*(R^2)*X*p*d ;

Force which is rising the shield must be bigger then its mass multiplied to ‘g’. Also reserve of swimability ‘Y‘ is usually taken 30% of replacement, so Y=0.3:
maximum replaced mass of water is
m = (2Pi/3)*(R^3)*(p_water)*(3X-1)*(1-Y) ;
and equilibrium equation will be:
(2Pi/3)*(R^3)*(p_water)*(3X-1)*(1-Y) >= 4Pi*(R^2)*X*p*d
from which we can find swimability criterium for thickness of submarine wall and its radius:
(d/R) <= (3X-1)*(1-Y)*(p_water)/(6*X*p_steel) with conditions 1<=X<=infinity;  0<Y<1.

Lets suppose, that ‘d’ is everywhere equal: at cylinder and spherical parts.
In this case we use correlation for maximum internal pressure of cylinder shield: (d/R) = (P/sigma) where sigma is maximum (‘sigma 0.2‘) fluidity strength of chosen shield material, it is measured in Pascales and can be found in literature. This formulae is case of internal pressure, for external pressure case it is some optimistic, and we will use it for appreciation.
At the same time, hydrostatic pressure is P= (p_water)*g*h; Value ‘h‘ means maximum depth of submarine.
So h = P/(p_water*g) = sigma*(d/R)/(p_water*g).
Density of water dissapears and we get formulae:
h <= (3X-1)*(1-Y)*(sigma_steel/p_steel)/(6*X*g) ;

Analyzing this correlation, we note that if X=1, formulae not gives the right value for spherical case, and reason is understandable:
in the beginning we supposed, that form of shield has cylinder component.
If we will suppose that only spheres and no cylinder elements, we can take correlation (d/R) = (P/(2*sigma_of_steel)) and depth, i.e. ‘h‘ value, will be bigger.
Certainly, in this case light shield can be a cylinder which is necessary for high speed, and robust housing can be chain of 6 or 9 spheres inside light shield.
But their intersection radius, if thickness ‘d‘ is constant everywhere, must be made not bigger then (R/2) in other case we get equivalent of cylindrical tunnel between spheres and must use formulae (d/R) = (P/sigma) without multiplier ‘2’. Such mathematics appears due to the fact, that if there is a cylinder with external or internal pressure, applied strength in parallel cross section to its axis is 2 times bigger then in perpendicular cross section, and also perpendicular cross section strength is equal to strength if the case of sphere.

Making few obvious appreciations, we can see numerical values of achievable deepness of submarines.
Lets write previous equation as:
h <= (3X-1)*(1-Y)*Z*(sigma_steel/p_steel)/(6*X*g) ;
here ‘Z‘ is percent of shield’s mass in all replacement value. We can suppose, that:
submarine with ballistic missiles has robust housing which is 20% of all mass;
fast submarine with cruise missiles has 40% of all mass in the shield;
deepwater submarine has 60% of all mass in the shield;
and batiscaphe can have shield’s share up to 80% of all rising force.

Lets suggest, that shield’s material is steel with sigma=70 (kg/mm^2) = 700 MPa, density 7800 (kg/m^3), swimability reserve Y=0.3, X=9, in this case
maximum depth:
h = (3*9 -1)*(1-0.3)*Z*(700E6/7800)/(6*9*9.8) = 3086*Z meters;
If 20% of submarine’s mass is in robust housing, Z=0.2 and achievable deepness is 617 meters.
If safety coefficient is 1.5 then we get  operational depth 400 meters, which is easily achievable using modern technologies.

Certainly, submarine must be fast i.e. with powerful engine, with weapons, equipment and stocks for operators, but we can note that if shield’s mass share is 60%, then easilly achievable deepness for usual steel and cylindrical form is 1200 meters.

Now we compare with required 4600 – 5500 meters and remember, that we have two reserves: spherical form and non-steel materials with better (strength/density) coefficient. Such known materials are, for example, aviation aluminum alloys and titanium non-magnet alloys.
Titanium alloys have density 4500 kg/m^3 and sigma up to 1000 MPa. Calculation gives:
h = (3*9-1)*(1-0.3)*Z*(1E9/4500)/(6*9*9.8) = 7642*Z meters.
If Z=0.6 then h=4585 meters.

Also we can use reserve, which appears if we choose for the form of submarine a chain of spheres inside cylinder light shield: maximum depth for spherical form is bigger then for cylinder.
For sphere raising gidrostatic force is F = mg = p(H2O)*V*g = p(h2O)*g*(4/3)*Pi*R^3;
Gravity force is F = 4*Pi*d*p(wall)*g*R^2;
If one is equal to another, we get condition (d/R) = p(H2O)/(3*p_wall);
At the same time, for sphere maximum pressure condition is (d/R) = P/(2*sigma) = p(H2O)*g*h/(2*sigma);
In the case of no reserve coefficients, we see p(H2O)/(3*p(wall)) = p(H2O)*g*h/(2*sigma);
Extracting maximum depth from this equation, we get equation for maximum depth of spherical floating shell:
h <= (2*sigma)/(3*p_wall*g)
where:
sigma = maximum long-time strength of wall material, measured in Pascales;
p_wall = density of wall material, measured in kg/m^3;
g = gravity acceleration 9.8 m/sec^2.

For example, if titanium alloy has density 4500 kg/m^3 and sigma = 1000 MPa, then maximum depth of floating sphere will be h <= 15117 meters.
As we can note, floating sphere has (4/3) = 1.3(3) times bigger maximum depness, compared to floating infinitely long cylinder made using the same material.

Also as in the case of sylinder sybmarine, for real chain spherical submarine we can suppose swimability reserve 30% (Y=0.3), share of submarine’s mass is in robust housing 60% (Z=0.6). Also we suppose safety coefficient A=1.5 times between destructive depness and maximum work depness:
h <= (2*sigma)*(1-Y)*Z*/(3*A*p_wall*g) = 2*(10^9)*(0.7)*(0.6)/(3*1.5*4500*9.8) = 4232 meters.

As we can see, titanium submarine made using chain of spheres, surely can have maximum work depness ~4600 meters which corresponds ability to achieve the floor of oceans under the 60% of surface square of all oceans of our planet. This submarines have good floating reserve (30%) and enough (40%) mass share for atomic engine, weapons and stocks for the team.

In Russia one titanium submarine, the ‘Mike’ project which was built in 1983, had maximum work deepness, as widely recognized, 1250 meters. It’s real maximum was 2000 meters. Soon after creation, it reached a world record of deepness: 1025 meters. Admiral, who was in it during this, knew that real absolute maximum depth of submarine is 2 times bigger.

As a conclusion, we are sure that creation of next generation of serial deepwater nuclear submarines, which have work deepness 4600 – 5500 meters, is absolutely real.

Tagged with:  

Осенью 1999 г. в США увидела свет книга Шерри Зонтаг и Кристофера Дрю «Блеф слепца» (Blind Man’s Bluff), имевшая подзаголовок «Нерассказанная история американского подводного шпионажа». В ней преимущественно речь идет о тайных операциях субмарин ВМС США против СССР после Второй мировой войны. В ней в частности так же сообщалось, что в августе 1972 г. американская атомная подводная лодка специального назначения Halibat установила рядом с подводным кабелем Министерства обороны СССР, связывающего Камчатку с материком, устройство, к слову, весьма значительных габаритов, снимавшее и записывавшее на магнитную ленту секретную информацию.
Время от времени американские субмарины в ходе операции под кодовым названием Ivy Bells («Цветы плюща») пробирались в Охотское море к «золотой жиле», как в Пентагоне, ЦРУ и АНБ называли кабель, и забирали с него записи переговоров.
Так продолжалось довольно долго.

Фото 1: Американский шпионский «девайс», извлеченный со дна Охотского моря

Однако в Вашингтоне не знали, что некоторое время спустя после установки устройства за него зацепился якорь какого-то советского гражданского судна. На помощь пришли водолазы ВМФ. Они-то и обнаружили заокеанский шестиметровый «подарок». Соответствующие советские службы использовали его на полную катушку, гоняя через кабель дезинформацию. Факт обнаружения подводного «жучка» инициировал проверку всех подводных советских коммуникаций. И когда подслушивающее устройство было обнаружено на одной из линий связи у Кольского залива, никто этому не удивился. И его тоже сделали инструментом слива «дезы».
Установка «жучков» была подтверждена в 1980 г. сотрудником АНБ Рональдом Пелтоном, завербованным советской разведкой в США, которого выдал в 1985 г. агент-перебежчик Виталий Юрченко. После этого использовать шпионский «девайс» в Охотском море не имело смысла. Его подняли со дна и представили общественности.
Но «жучок», установленный Halibat, находился на глубине 120 м. Работать с объектами, находящимися на глубинах более 500 м, а тем более 1000 и 6000 м, значительно сложнее, а то и невозможно. По дну Атлантики проходят секретные линии информационной сети Пентагона DoDIN, там размещены стационарные станции гидроакустического наблюдения, следящие за перемещением российских атомоходов, а также подводные «маяки», с помощью которых американские субмарины сверяют точность своего курса. И вообще под многометровыми толщами воды находится много чего интересного.

Фото 2: Переоборудование АПЛ «Подмосковье»

11 августа этого года в северодвинском Центре судоремонта «Звездочка» состоялась церемония вывода из эллинга АПЛ «Подмосковье», проходящей глубокую модернизацию, а фактически перестройку из РПКСН К-64 проекта 667БДРМ в большую подводную лодку специального назначения БС-64 по проекту 09787 разработки ЦКБ МТ «Рубин». Сейчас она уже спущена на воду. Эта субмарина станет носителем так называемых атомных глубоководных станций 1-го ранга.
Переоборудование стратегического ракетоносца К-64 в носитель подводных аппаратов началось аж в 1999 году: работы неоднократно приостанавливались из-за пересмотра техзадания и недостатка финансирования. Известно, что из корпуса АПЛ был вырезан ракетный отсек — его заменили отсеком специальной конструкции с разъемами и шлюзовыми переходами для малых подводных лодок. Также в нем расположены комфортабельный отсек для экипажа гидронавтов станции и научно-исследовательская часть. За счет вставки нового отсека длина подлодки возросла.
Атомные глубоководные станции (АГС) – это относительно небольшие атомные подводные лодки, способные работать на глубинах более 1000 м. Они предназначены для выполнения научно-исследовательских и специальных операций. Первые три АГС проекта 1910 «Кашалот» подводным водоизмещением около 2,000 т разработки СПМБМ «Малахит» (главный конструктор – Е.С. Корсуков) были построены «Адмиралтейскими верфями» и в 1986-1994 гг. переданы заказчику. На Западе эти лодки получили обозначение Uniform.

Фото 3: АПЛ «Подмосковье» — транспортировщик АГС

Фото 4: ПЛАСН «Подмосковье» может транспортировать АГС разных типов

Все работы по переделке субмарины проводились на судоремонтном заводе «Звездочка» с 1994 по 2002 годы. В частности на ПЛА были демонтированы все шахты для баллистических ракет, помимо этого была укреплена конструкция подводной лодки, которая теперь, по неподтвержденной информации, может погружаться на глубину до 1 километра. АГС АС-12 крепится к носителю снизу. В настоящее время лодка К-129 числится в составе российского Северного флота и носит обозначение БС-136 «Оренбург».
Следующее трио АГС проекта 1851/18511 «Нельма» подводным водоизмещением около 1,000 т проектировалось так же СПМБМ «Малахит» (главный конструктор – Герой России С.М. Бавилин) и строилось теми же «Адмиралтейскими верфями». Сколько-нибудь четких фотографий этих подлодок нет. Но если довериться ресурсу Covert Shores, специализирующемуся на сборе и обобщении информации о силах и средствах специальных подводных операций, то в днищевой части носовой оконечности этих субмарин имеются мощные манипуляторы, способные выполнять самые разные задачи: от собирания элементов разного рода оружия на морском дне до «перегрызания» подводных кабелей. Западное обозначение лодок этого типа – X-Ray.

Фото 5: АГС проекта 1910 «Кашалот»

Наконец, самая известная из АГС – АС-31 проекта 10831 подводным водоизмещением 2100 т – из-за особенностей конструкции своего прочного корпуса, представляющего собой «цепочку» титановых сфер, получила неофициальное название «Лошарик». Субмарина сконструирована СПМБМ «Малахит» (главный конструктор – Герой России Ю.М. Коновалов) и построена Севмашем. Она вошла в строй в 2006 году. Во время экспедиции «Арктика-2012» в августе-октябре 2012 г. эта лодка двадцать суток занималась сбором грунта и образцов породы на глубинах 2,500-3,000 м. Этот рекорд вряд ли в обозримом будущем будет побит. Разве что какой-нибудь очередной АГС российского производства.
Как рассказали «Известиям» в Минобороны, лодка помогала корректировать бурильные работы, которые проводились с дизель-электрических ледоколов «Капитан Драницын» и «Диксон» для определения внешней границы континентального шельфа России.
В результате совместной работы получен огромный объем геологического материала. Отобрано более 500 кг обломков классифицируемых горных пород. Результаты экспедиции лягут в основу заявки в комиссию ООН по морскому праву на подтверждение продолжения континентального шельфа России, ранее отклоненную за недостаточностью геологических образцов, и, соответственно, приоритетного права на разработку ресурсов шельфа, — рассказал собеседник «Известий».
Он добавил, что, по данным Минприроды, хребты Ломоносова и Менделеева обладают запасами нефти и газа в объеме более 5 млрд.т условного топлива.
Во время экспедиции был обследован весь хребет и пробурено три скважины на двух участках с отбором образцов грунта. С помощью «Лошарика», оснащенного манипуляторами, грунт смогли собрать драгой (устройство очистки породы от наслоений), телегрейфером (большегрузный ковш с телекамерой) и гидростатической трубкой.
Работы велись на глубине от 2,5 км до 3 км в течение 20 суток. За счет атомного реактора и уникального титанового корпуса лодка может находится под водой намного дольше, чем гражданские батискафы на аккумуляторах.
По данным одного из участников экспедиции, у лодки в ходе работ были повреждена система внешнего освещения, которая помогает лодке «видеть» дно на глубине и находить различные предметы. Кроме того, придется ремонтировать манипуляторы, с помощью которых лодка забирает со дна океана пробы грунта и другие объекты.

Сейчас «Лошарик» готовят к техобслуживанию в 42-м цехе завода «Севмаш». Поскольку «Лошарик» оснащен атомным реактором, после каждого выхода в море лодку приходится поднимать в док, осматривать и устранять мелкие неисправности. В ходе ремонта планируется восстановить техническую готовность лодки, проверить узлы и механизмы, в частности валы и гребные винты. Хоть глубина для этой лодки была не очень большая, но придется осматривать и обслуживать прочный корпус. Во время одного из погружений вышла из строя система внешнего освещения — заменим и ее, — пояснил источник в оборонно-промышленном комплексе. Как рассказал собеседник, корпус «Лошарика» сделан из высокопрочного титанового сплава, поэтому устранить вмятины на корпусе намного сложнее, чем у обычной стальной лодки. Носителем «Лошарика» является переделанная стратегическая подводная лодка проекта 667 «Кальмар», у которой демонтированы пусковые шахты баллистических ракет — батискаф крепится под ее днищем.
В феврале этого года мы уже обслуживали «Лошарик». Готовили его к походу на Северный полюс. Установили дополнительное батиметрическое оборудование для сейсмического профилирования морского дна — в частности, профилограф (устройство для замера глубины донных отложений), гидролокатор бокового обзора и т.д. Тогда же подготовили запасные части и титановые плиты для повторного ремонта. Доработали и лодку-носитель, установили на нее многолучевой эхолот, — продолжил представитель Минобороны.
Потребность в таком аппарате очень высокая. В России помимо «Лошарика» на глубине 2–3 км могут работать только глубоководные станции «Мир». В прошлую экспедицию под руководством Артура Чилингарова использовали оба «Мира». Но сейчас выполнить пришлось более сложные и длительные подводные работы. Для нее у «Миров» не хватает автономности. Поэтому решили использовать «Лошарик», — пояснил собеседник «Известий».
По словам представителя Минобороны, если «Мир» работает на аккумуляторах, которые обеспечивают работу в течении 72 часов, то «Лошарик» — это полноценная субмарина с атомным реактором. Он позволяет обеспечить автономную работу батискафа в течение несколько месяцев. На ней есть места для отдыха экипажа, рабочие помещения, камбуз и т.д. При этом регенерация воздуха и воды обеспечивается не хуже, чем на космических станциях.
«Миры», по сути, — прогулочные батискафы. Манипуляторы у них слабые, с ограниченным количеством движений, дополнительные средства батиметрии не поставишь, — объяснил представитель «Минобороны».

Фото 6: Так по версии ресурса Covert Shores выглядит АГС проекта 1851 «Нельма»

Доставляют АГС к месту работы атомные подводные лодки специального назначения (ПЛАСН). По сути дела, это транспортные субмарины. Сейчас в этой роли выступает БС-136 «Оренбург» проекта 09786 разработки ЦКБ МТ «Рубин». Она переоборудована из РПКСН К-136 проекта 667БДР в Центре судоремонта «Звездочка». В корпус врезан специальный отсек, в который «прячется» АГС и транспортируется к месту глубоководных исследований. Именно АПЛ БС-136 «Оренбург» в сентябре 2012 г. доставила подо льдами «Лошарика» на Северный полюс, и тот несколько раз «сбегал» на дно макушки Земли.

Фото 7: КС-129 «Оренбург» – большая ПЛА специального назначения проекта 09786

Фото 8: Во время автопробега по берегу Белого моря операторам английской телепрограммы Top Gear удалось заснять АС-31

На смену «Оренбургу» придет «Подмосковье». Проходят ремонты и модернизируются, готовясь к предстоящим миссиям, и атомные глубоководные станции. АГС и ПЛАСН-транспортировщики организационно входят в состав 29-й отдельной бригады ПЛА особого назначения Северного флота и базируются на Губу Оленью.

Фото 9: АГС АС-31 проекта 10831 по версии ресурса Covert Shores

В период с 2004 по 2007 год капитан 1-го ранга Опарин А. И. возглавлял проведение заводских, государственных и глубоководных испытаний опытной подводной лодки в Белом, Баренцевом, Гренландском и Норвежском морях. По неподтвержденной информации данная субмарина к осени 2009 года полностью закончила программу государственных испытаний. Скорее всего, была принята в состав флота в 2010 году или позднее. Так в мае 2010 года в прессе появлялась информация о том, что ряд специалистов КБ «Рубин», «Малахит», «Прометей», СРЗ «Звездочка» были награждены государственными премиями за «опытный глубоководный заказ 1083К.

Предполагается, что ПЛА приписана к Северному флоту, при этом не подчиняется его командованию. АС-12 входит в состав Главного управления глубоководных исследований Минобороны РФ, которое более известно как «Подводная разведка» и подчиняется непосредственно министру обороны страны. Корпус глубоководной станции собран из высокопрочных титановых отсеков, имеющих шарообразную форму, в которых реализован принцип батискафа. Все отсеки лодки соединены между собой проходами и находятся внутри легкого корпуса.
Предполагается, что именно из-за конструктивных особенностей судостроители северодвинского предприятия «Севмаш» прозвали данную лодку «Лошариком» по аналогии с одним советским мультипликационным героем – лошадкой, которая была собрана из отдельных шариков. При этом технические характеристики лодки засекречены. По имеющейся в свободном доступе информации лодка имеет в длину до 79 метров. Полное водоизмещение лодки составляет 2,000 тонн. Глубоководная станция, по информации некоторых источников, может погружаться на глубину до 6,000 метров, и развивать максимальную скорость в 30 узлов.

Вероятно, что одну из сфер глубоководной станции «Лошарик» занимает атомный реактор Э-17 с паропроизводящей установкой и турбозубчатым агрегатом, мощность которого на валу составляет 10-15 тысяч л. с. Сообщается, что подлодка оснащена одним гребным винтом в специальном кольцевом обтекателе. Какого-либо вооружения на станции нет, но при этом она оснащена манипулятором, телегрефейром (ковш с телекамерой), драгой (система очистки породы), а также гидростатической трубкой. В состав экипажа «Лошарика» входит 25 человек – все офицеры.

Фото 10: Лодка-носитель «Оренбург» в месте постоянной дислокации, Оленья губа

Источники:
http://www.nationaldefense.ru/includes/periodics/maintheme/2015/1214/143117336/detail.shtml
http://topwar.ru/24870-sekrety-losharika.html
http://masterok.livejournal.com/2194087.html
http://masterok.livejournal.com/393335.html
http://topwar.ru/20479-losharik-proshel-ispytaniya-v-arktike.html
http://militaryrussia.ru/forum/viewtopic.php?f=760&t=1663&start=60

Продолжаем тему ПЛА специального назначения.

По сообщениям прессы, ВМФ России в 2018 году получит особый корабль – научно-исследовательскую атомную подводную лодку (ПЛА) «Белгород» проекта 09852. Субмарина достраивается на базе подводного крейсера проекта 949А в Северодвинске. ПЛА станет носителем обитаемых и роботизированных подводных аппаратов (ПА) и специального оборудования.

Третья мировая война (ТМВ) – это пример беспрецедентного театра боевых действий, с применением оружия массового поражения, не исключая ядерное, и сложнейших технических разработок. Эксперты прогнозируют самые разнообразные сценарии развития событий ТМВ, спорят о возможности развития подобного конфликта, но абсолютно ясно, что страшна эта война будет именно благодаря технике и вооружению способному нанести катастрофический урон по противнику.
Одним из примеров оружия будущего является подводная лодка особого назначения «Белгород» К-139. ПЛА номинально относиться к классу Антей (или «Oscar-II», согласно стандартам НАТО), это один из образцов передовой технической мысли, обладающий широкими тактическими возможностями. ПЛА классифицируется как субмарина пятого поколения, так как конструктивные особенности выделяют её на фоне более старых образов подобной техники, и это при условии, что главный конкурент СССР, а ныне России – США, располагает образцами подводных лодок лишь четвёртого поколения. Из чего можно сделать вывод, что К-139 не просто пополнил, но и модернизировал атомный подводный флот России.

Почти вся информация по субмарине К-139 храниться под грифом секретности, однако получили огласки некоторые её характеристики. Предполагается, что атомный подводный крейсер «Белгород» будет развивать скорость в размере 33 узлов (примерно 62 километра в час), что является достаточно крупным показателем с учётом габаритов корабля, его рабочая глубина погружения составляет порядка 420 метров, максимальная глубина примерно 500 метров. ПЛА имеет весьма внушительные размеры, около 154 метров в длину и 18 метров в ширину (вся флотилия ПЛА типа Антей получила неофициальное название «батон»), по максимальным показателям, её общее водоизмещение составляет 23,860 тонн. Однако, несмотря на внушительные размеры, экипаж, требуемый для управления составляет 130 чел. ГЭУ ПЛА имеет два ядерных реактора с мощностью каждого в 190 МВт. Автономность минимально составляет 120.

Основу вооружения К-139 составляют 24 ракеты «Гранит» (по стандартам НАТО – «Shipwreck», Кораблекрушение) – это дальнобойные сверхзвуковые крылатые ракеты, которые способны произвести запуск, как из-под воды, так и над её поверхностью. «Белгород» имеет в своём распоряжении стандартные торпедные аппараты 2×650 и 4×533, в количества 24 штуки.

По данным открытых источников, на АПЛ проекта 09852 будет смонтировано большое количество специального и водолазного оборудования, шлюзовые камеры для перехода в обитаемые глубоководные аппараты. На «Белгороде» будет развернут геофизический комплекс «Магма», позволяющий вести геологоразведочные работы на арктическом шельфе. Он в 4 раза снизит затраты на проведение исследований в труднодоступных акваториях независимо от погодных условий и ледовой обстановки.
Подводный атомный крейсер, превращенный в многофункциональный корабль, может использоваться как для изучения Мирового океана, в разведке и добыче полезных ископаемых на арктическом шельфе, так и для разведки, монтажа оборудования и обслуживания его на морском дне.

При этом, тактический потенциал К-139 не ограничивается приведёнными выше данными. По одной из неподтвержденных официально версий, лодка проекта 09852 может выступать в роли носителя перспективного подводного многоцелевого комплекса “Статус-6” (материал 79)

На основе имеющейся информации можно сделать вывод, что этот корабль и программа “Статус-6” тесно взаимосвязаны. Скорее всего, проект “Статус-6”, фактически базируется на К-139, в результате чего можно считать, что ядерное оружие тоже является частью оснащения этого судна. Однако, атомное оружие не всегда рассматривалось как часть вооружения АПЛ “Белгород”, принято считать, что судно приобрело подобный статус в 2012 году после официального заявления главкома ВМФ Владимира Высоцкого, о достройке судна «По специальному государственному проекту», это и послужило одной из предпосылок к догадкам о проекте “Статус-6”. Торпеда катастрофического поражения прибрежной территории, которую получает как основной элемент вооружения ПЛА специального назначения “Белгород” становиться весомым военным аргументом.

В дополнение к сказанному выше, особенности исходного проекта, ПЛАРК пр.949АМ, позволяют
– высвободить огромные объемы под очень значительное количество пилотируемых и беспилотных подводных аппаратов различного назначения
– установить полноценный водолазный комплекс на борту самой лодки, по возможностям и удобству (оперативности) применения превсходящий аналогичные комплексы на надводных судах
– проводить поисково-спасательные операции максимально эффективно (нет зависимости от метеоусловий, высокая скорость подводного)
– максимально использовать потенциал энергетики на борту (ЯЭУ).
– сохранит часть ударного потенциала (до 3/4 ПКР Оникс в каждой шахте ПКР Гранит и/или до 6 КР семейства Калибр/шахта.

Источники:
http://www.3world-war.su/vooruzhenie/vooruzhenie-rossii/1185-belgorod-k-139-podvodnaja-lodka-jadernoj-programmy.html
http://29ru.net/pu/various/93308553/
http://tehnoomsk.ru/node/2665
http://militaryrussia.ru/blog/topic-708.html

Будучи многолетним апологетом легководников, никогда бы не подумал, что буду выступать адвокатом ЖМР. Но пришлось недавно порассуждать о перспективах развития “малышей” и получается, что в конкретно определенных рамках альтернативы сплаву Pb-Bi нет.
Не Na, не Hg, не пресловутой и распиаренной “соли”, я кстати считаю солевую тему конкретной “панамой”, а именно нелюбимому многими тяжелому сплаву. А теперь, по прозвучавшей за разговорами просьбе/рекомендации еще и пришлось письменно оформить мнение об этом предмете.

Но вот что интересно. После всех размышлений мне показалось, что зашоренность модным моноблочным дизайном сильно мешает таким проектам. Получив же отзыв, сильно захотелось ответить анонимному “ученому соседу”. Даже не знаю…

Фото: Кристаллы Висмута

В России ведутся испытания автономного необитаемого Подводного Аппарата (ПА) «Клавесин-2Р». Такими беспилотными ПА будет вооружена ПЛА специального назначения БС-64 «Подмосковье» проекта 09787.

screen-shot-2016-09-09-at-3-28-02-pm

 

Первое поколение ПА «Клавесин-1Р» (на фото) было испытано в 2007 году. Тогда были достигнуты: глубина погружения 6083 метра, дальность хода до 300 километров и автономность работы 5 суток. Характеристики второго поколения не называются официально – работы по проекту имеют важное значение для ВМФ России. У первого и второго типа «Клавесинов» схожие длина – около 6 метров и диаметр – 0,9-1 метр. Также в открытых источниках сообщается, что «Клавесин-1Р» представляет собой «глубоководный многоцелевой комплекс, оснащенный современными средствами автономной и гидроакустической навигации и связи, реконфигурируемой системой управления, целевой аппаратурой для выполнения поисковых работ, съемки и картографирования морского дна». Его испытания проходили в Японском море и Курильско-Камчатском глубоководном желобе. Также беспилотный ПА прошел «опытную эксплуатацию на континентальном шельфе в Арктике и при поиске затонувшего радиоизотопного источника в Охотском море».
В российских СМИ уже появились оригинальные гипотезы, что этот автономный аппарат является «младшим братом» ужаса американских адмиралов – атомной спецторпеды «Статус-6». Источник не располагает данными о возможном применении «Клавесина» в виде атомного дрона: судя по всему, это вполне обычный, для своего класса, ПА используемый для ведения разведки и поисковых работ. На это намекает и скромная скорость его передвижения, которую называют несколько российских источников – около 3 узлов (5,5 км/ч).
Предполагается, что кроме БС-64 новые аппараты этого семейства получат модернизированные атомные субмарины проекта 949АМ.

Примечание редактора: Скорее всего на фото прототип, уменьшенная копия “изделия” предназначенная для испытаний систем управления и прочей начинки. Судя по другим фотографиям, попавшим в сеть, на испытательной модели применены подруливающие устройства. Количество винтов говорит лишь о временной пропульсивной силовой установке замещающей реальную.

 

Источник: http://www.tehnoomsk.ru/node/2258