Наверное этот вопрос надо было осветить раньше. Так как в зависимости от логики и резонного выбора а/з (аварийной защиты) реактора выбираются алгоритмы вывода реактора и установки из аварийной ситуации. Любимый объект нашего препарирования, реактор NuScale, как характерный представитель “семейства” SMR LWR. Постараемся ограничить заумности в рассуждениях и проанализировать, как же принимается то или иное решение и как будет вести себя установка при возникновении той или иной аварийной ситуации.

Для начала выделим две группы нештатных ситуаций:

  • аварийные сигналы при пуске реактора
  • аварийные сигналы при работе реактора/установки.

Первые, как правило возникают при ошибках выхода на мощность и связаны с работой аппаратуры контроля мощности и/или объединены по одному принципу: критическому уровню периода удвоения мощности – τ и превышению уровня мощности над заданным. Оба сигнала могут возникнуть при глубоком и быстром маневре мощностью, но их возникновение довольно легко можно предотвратить аппаратно, задав специальную программу ограничивающую скорость увеличения нейтронной мощности. Сигналы и ситуации связанные с отказами электронного оборудования систем управления рассматривать отдельно смысла нет. Они также могут быть присоединены к этой группе. С точки зрения вывода установки, особых вопросов не возникает. Если это ввод, то по сути, разогрев еще не окончен, и вывод осуществляется штатно. Если же это ситуация связана с маневрами мощности, то я нахально обзову это сбоем в работе оборудования и систем контроля и управления, и вывод осуществляется без особых проблем.

Вторая группа сигналов, аварийные ситуации связанные с выходом параметров 1К за пределы допустимых значений, во время работы установки. В отличие от первой группы, установка прогрета, все оборудование работало штатно и продолжительное время. Здесь тоже могут быть варианты, поэтому прежде всего отделим сигналы связанные с аварией ПТУ. Их появление означает, что использовать ПТУ как канал расхолаживания нельзя. Именно в этом случае возникает режим вывода при помощи отдельных систем расхолаживания ППУ.

Если аварийная ситуация не связана с ПТУ, то вывод осуществляется с использованием оборудования ПТУ и, как правило, это намного проще. Так как все оборудование установки находится в работе и имеется мощный канал отвода тепла от АЗ. Основной вопрос здесь, обеспечение циркуляции по 1К. А с пониманием этого похоже у NuScale застарелая проблема. В остальном, подача ПВ в ПГ и отвод пара, паро-водяной смеси и воды через паропроводы, с последующим переключением на систему расхолаживания, не представляет сложности. К таким сигналам относятся: повышение давления в 1К, повышение температуры в 1К, упомянутое повышение мощности реактора, сброс а/з оператором.

В части начатого в 6.5.1 и 6.5.2. рассуждения о системах безопасности NuScale и их работе, наиболее серьезные это аварии связанные с выводом установки, это аварии выходом из строя ПТУ:

  • повреждение ГК,
  • понижение давления охлаждающей воды в ГК,
  • снижение давления ПВ,
  • повышение давления ПЕ.

То есть, все аварии, которые ограничивают возможности использования оборудования ПТУ для вывода установки. В этом случае с первых секунд вывод осуществляется исключительно системами безопасности ППУ без какого либо использования оборудования ПТУ. А это значит, не задействованы в работу ПНы, ГК, конденсатно-питательная система (КПС), система пара. Отдельная и еще более опасная проблема, это аварии двух типов: со снижением уровня в 1К или течь 1К, и обесточивание. Вот эти аварийные ситуации мы и рассмотрим ниже. Здесь закончим выделение своеобразных “граничных условий” области рассмотрения. То есть, препарируем только ситуации перечисленные ниже:

  1. Выход из строя ПТУ. Эта ситуация отличается тем, что сохраняется контроль за ППУ, и при этом возможно производить некие манипуляции с оборудованием. В принципе, в отличие от корабельной схемы, на АЭС, при разрыве ГК, ничего не запрещает осуществлять сброс пара из ПГ в поврежденный конденсатор или даже в атмосферу. Важно понимать, насколько, при этом, серьезны будут потери ПВ для пополнения контура. Хотя, в отличие от корабельных установок или от установок плавучих АЭС, запас ПВ может быть во много больше и ее потери не так критичны.
  2. Особенности обесточивания в том, что все оборудование отрабатывает по своим/определенным индивидуальным алгоритмам, и переводится в безопасное состояние без какого либо контроля со стороны оператора(ов). Суть этого процесса в том, что подобрав алгоритмы работы отдельных элементов/агрегатов оборудования и использовав его поведение при возникновении аварийной ситуации, перевести установку в режим расхолаживания без привлечения какого либо стороннего источника энергии и сторонних действий.
  3. Течи 1К. Эта ситуация наиболее опасна, так как при течи контура необходимо обеспечить подачу воды высокой чистоты в реактор. В этом случае надо понимать, что при разном размере течи, необходимо выполнить разные действия. При малом, подпитывая контур вывести установку, при среднем, максимально подпитывая выводить установку экстренно/ускоренно, а при разрыве контура, выводить установку со сбросом давления в 1К и понимая, что происходит потеря воды, предпринять меры к ее пополнению из стороннего источника. Как и какие объемы ВВЧ могутбыть поданы в контур? Ну вероятнее всего оптимально говорить о 1-2 м3/час, при сохранении давления в контуре, и много больше при падении давления в контуре, например при разрыве.
Вот и получается, что несмотря на продекларированные в презентации от сентября 2011 принципы дизайна NuScale, они не  точно соответствуют идее.  А именно, и это как минимум: 
  • Пока непонятны выводы об отсутствии большой аварии LOCA. Что, корпус реактора безупречен? Нет сварных швов? Нет усталости? Нет дефектов, в конце-концов? Чем отличается допущение о возможности LOCA в большом реакторе, от возможности LOCA в малом? К реактору не подходит никаких труб? Анализировался скажем гильотинный отрыв патрубка подачи т/н 1К от насосов подпитки или патрубка от предохранительного клапана (диаметр 75 мм), да мало ли чего? Какая при этом будет течь? Если это мало, то какой объем подпиточной воды будет подаваться при выводе установки и как? Каким расходом? Похоже что дизайнеры рассматривают только малые отрывы. Насколько это справедливо? 
  • Дизайнеры NuScale декларируют, что при аварийном выводе установки им не понадобится никакое оборудование, никакие насосы. Они это серьезно полагают? Я все про то же размыкание контура при снижении температуры. Как воду то подать в корпус, если там давление есть?  

Рассуждая выше, подумалось, что можно составить диаграмму алгоритмов по которым производится вывод установки в разных ситуациях. Возможно она будет полезна при представлении системы управления, формировании ТЗ и прочих всяких случаях. Кроме прочего, стало понятно, что анализ параметров установки неизбежен. Только так можно оценить возможности теплоотвода, поняв процессы теплосъема и отвода тепла в каждом конкретном случае. Иными словами, надо учитывать не только теплоемкости при разном давлении, но и теплоту парообразования. Это уже задача для термогидравликов и на более серьезном уровне.

 

Leave a Reply